Summary: | La tomodensitométrie est une technique très utile qui permet de mener avec succès des analyses non-invasives dans plusieurs types d'applications, par exemple médicales ou industrielles. L'analyse manuelle des structures d'intérêt présentes dans une image peut prendre beaucoup de temps, être laborieuse et parfois même impossible à faire en raison de sa complexité. C'est pour cela que dans cette thèse, nous proposons et développons des algorithmes nécessaires à cette analyse, basés sur la géométrie discrète et la topologie. Ces algorithmes peuvent servir dans de nombreuses applications, et en particulier au niveau de l'analyse quantitative automatique de l'arbre bronchique humain, sur la base d'images de tomodensitométrie. La première partie introduit les notions fondamentales de la topologie et de la géométrie discrètes utiles dans cette thèse. Ensuite, nous présentons le principe de méthodes utilisées dans de nombreuses applications : les algorithmes de squelettisation, de calcul de l'axe médian, les algorithmes de fermeture de tunnels et les estimateurs de tangentes. La deuxième partie présente les nouvelles méthodes que nous proposons et qui permettent de résoudre des problèmes particuliers. Nous avons introduit deux méthodes nouvelles de filtrage d'axe médian. La première, que nous appelons "hierarchical scale medial axis", est inspirée du "scale axis transform", sans les inconvénients qui sont propres à la méthode originale. La deuxième est une méthode nommée "discrete adaptive medial axis", où le paramètre de filtrage est adapté dynamiquement aux dimensions locales de l'objet. Dans cette partie, nous introduisons également des estimateurs de tangente nouveaux et efficaces, agissant sur des courbes discrètes tridimensionnelles, et que nous appelons "3Dlambda maximal segment tangent direction". Enfin, nous avons montré que la géométrie discrète et les algorithmes topologiques pouvaient être utiles dans le problème de l'analyse quantitative de l'arbre bronchique humain à partir d'images tomodensitométriques. Dans une chaîne de traitements de structure classique par rapport à l'état de l'art, nous avons appliqué des méthodes de topologie et de géométrie discrète afin de résoudre des problèmes particuliers dans chaque étape du processus de l'analyse quantitative. Nous proposons une méthode robuste pour segmenter l'arbre bronchique à partir d'un ensemble de données tomographiques (CT). La méthode est basée sur un algorithme de fermeture de tunnels qui est utilisé comme outil pour réparer des images CT abîmées par les erreurs d'acquisition. Nous avons aussi proposé un algorithme qui sert à créer un modèle artificiel d'arbre bronchique. Ce modèle est utilisé pour la validation des algorithmes présentés dans cette thèse. Ensuite nous comparons la qualité des différents algorithmes en utilisant un ensemble de test constitué de fantômes (informatiques) et d'un ensemble de données CT réelles. Nous montrons que les méthodes récemment présentées dans le cadre des complexes cubiques, combinées avec les méthodes présentées dans cette thèse, permettent de surmonter des problèmes indiqués par la littérature et peuvent être un bon fondement pour l'implémentation future des systèmes de quantification automatique des particularités de l'arbre bronchique === Computed tomography is a very useful technic which allow non-invasive diagnosis in many applications for example is used with success in industry and medicine. However, manual analysis of the interesting structures can be tedious and extremely time consuming, or even impossible due its complexity. Therefore in this thesis we study and develop discrete geometry and topology algorithms suitable for use in many practical applications, especially, in the problem of automatic quantitative analysis of the human airway trees based on computed tomography images. In the first part, we define basic notions used in discrete topology and geometry then we showed that several class of discrete methods like skeletonisation algorithms, medial axes, tunnels closing algorithms and tangent estimators, are widely used in several different practical application. The second part consist of a proposition and theory of a new methods for solving particular problems. We introduced two new medial axis filtering method. The hierarchical scale medial axis which is based on previously proposed scale axis transform, however, is free of drawbacks introduced in the previously proposed method and the discrete adaptive medial axis where the filtering parameter is dynamically adapted to the local size of the object. In this part we also introduced an efficient and parameter less new tangent estimators along three-dimensional discrete curves, called 3D maximal segment tangent direction. Finally, we showed that discrete geometry and topology algorithms can be useful in the problem of quantitative analysis of the human airway trees based on computed tomography images. According to proposed in the literature design of such system we applied discrete topology and geometry algorithms to solve particular problems at each step of the quantitative analysis process. First, we propose a robust method for segmenting airway tree from CT datasets. The method is based on the tunnel closing algorithm and is used as a tool to repair, damaged by acquisition errors, CT images. We also proposed an algorithm for creation of an artificial model of the bronchial tree and we used such model to validate algorithms presented in this work. Then, we compare the quality of different algorithms using set of experiments conducted on computer phantoms and real CT dataset. We show that recently proposed methods which works in cubical complex framework, together with methods introduced in this work can overcome problems reported in the literature and can be a good basis for the further implementation of the system for automatic quantification of bronchial tree properties
|