Contribution à l'étude des équations de Boltzmann, Kac et Keller-Segel à l'aide d'équations différentielles stochastiques non linéaires
L'objet de cette thèse est l'étude de l'asymptotique des collisions rasantes pour les équations de Kac et de Boltzmann ainsi que l'étude de la propagation du chaos pour l'équation de Keller-Segel dans un cadre sous-critique à l'aide d'équations différentielles stoc...
Main Author: | |
---|---|
Other Authors: | |
Language: | en fr |
Published: |
2013
|
Subjects: | |
Online Access: | http://www.theses.fr/2013PEST1085/document |
id |
ndltd-theses.fr-2013PEST1085 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-theses.fr-2013PEST10852017-06-29T04:37:35Z Contribution à l'étude des équations de Boltzmann, Kac et Keller-Segel à l'aide d'équations différentielles stochastiques non linéaires Contribution to the study of Boltzmann's, Kac's and Keller-Segel's equations with non-linear stochastic differentials equations Equation de Boltzmann Asymptotique des collisions rasantes Equation de Kac Equation de Keller-Segel Boltzmann's equation Asymptotic of the grazing collisions Kac's equation Keller-Segel's equation L'objet de cette thèse est l'étude de l'asymptotique des collisions rasantes pour les équations de Kac et de Boltzmann ainsi que l'étude de la propagation du chaos pour l'équation de Keller-Segel dans un cadre sous-critique à l'aide d'équations différentielles stochastiques non linéaires. Le premier chapitre est consacré `a l'équation de Kac avec un potentiel Maxwellien. Nous commençons par donner une vitesse de convergence explicite (que l'on pense être optimale) dans le cadre de l'asymptotique des collisions rasantes. Puis nous approchons la solution de l'équation de Kac dans le cadre général, ce qui nous permet de montrer la propagation du chaos pour un système de particules vers cette dernière de manière quantitative. Dans le deuxième chapitre, nous étudions l'asymptotique des collisions rasantes pour l'équation de Boltzmann avec des potentiels mous et de Coulomb. Nous donnons là encore des vitesses de convergence explicites (mais non optimales).Enfin dans le troisième et dernier chapitre, nous montrons la propagation du chaos pour l'équation de Keller-Segel dans un cadre sous-critique. Pour cela, nous utilisons des arguments de compacité (tension du système de particules) This thesis is devoted to the study of the asymptotic of grazing collisions for Kac's and Boltzmann's equations and to the study of the chaos propagation for some sub-critical Keller-Segel equation with non-linear Stochastic Differentials Equations. The first chapter is devoted to the Kac equation with a Maxwellian potential. We start by giving an explicit rate of convergence (than we believe to be optimal) for the asymptotic of grazing collisions. Then, we approximate the solution of Kac's equation in the general case, which allows us to show the chaos propagation for some particle system to this last one in a quantitative way. In the second chapter, we study the asymptotic of grazing collisions for the Boltzmann equation with soft and Coulomb potentials. We also give explicit rates of convergence (which are not optimal).Finally in the third and last chapter, we show the chaos propagation for some sub-critical Keller-Segel equation. To this aim, we use compactness arguments (tightness of the particle system) Electronic Thesis or Dissertation Text en fr http://www.theses.fr/2013PEST1085/document Godinho Pereira, David 2013-11-25 Paris Est Fournier, Nicolas |
collection |
NDLTD |
language |
en fr |
sources |
NDLTD |
topic |
Equation de Boltzmann Asymptotique des collisions rasantes Equation de Kac Equation de Keller-Segel Boltzmann's equation Asymptotic of the grazing collisions Kac's equation Keller-Segel's equation |
spellingShingle |
Equation de Boltzmann Asymptotique des collisions rasantes Equation de Kac Equation de Keller-Segel Boltzmann's equation Asymptotic of the grazing collisions Kac's equation Keller-Segel's equation Godinho Pereira, David Contribution à l'étude des équations de Boltzmann, Kac et Keller-Segel à l'aide d'équations différentielles stochastiques non linéaires |
description |
L'objet de cette thèse est l'étude de l'asymptotique des collisions rasantes pour les équations de Kac et de Boltzmann ainsi que l'étude de la propagation du chaos pour l'équation de Keller-Segel dans un cadre sous-critique à l'aide d'équations différentielles stochastiques non linéaires. Le premier chapitre est consacré `a l'équation de Kac avec un potentiel Maxwellien. Nous commençons par donner une vitesse de convergence explicite (que l'on pense être optimale) dans le cadre de l'asymptotique des collisions rasantes. Puis nous approchons la solution de l'équation de Kac dans le cadre général, ce qui nous permet de montrer la propagation du chaos pour un système de particules vers cette dernière de manière quantitative. Dans le deuxième chapitre, nous étudions l'asymptotique des collisions rasantes pour l'équation de Boltzmann avec des potentiels mous et de Coulomb. Nous donnons là encore des vitesses de convergence explicites (mais non optimales).Enfin dans le troisième et dernier chapitre, nous montrons la propagation du chaos pour l'équation de Keller-Segel dans un cadre sous-critique. Pour cela, nous utilisons des arguments de compacité (tension du système de particules) === This thesis is devoted to the study of the asymptotic of grazing collisions for Kac's and Boltzmann's equations and to the study of the chaos propagation for some sub-critical Keller-Segel equation with non-linear Stochastic Differentials Equations. The first chapter is devoted to the Kac equation with a Maxwellian potential. We start by giving an explicit rate of convergence (than we believe to be optimal) for the asymptotic of grazing collisions. Then, we approximate the solution of Kac's equation in the general case, which allows us to show the chaos propagation for some particle system to this last one in a quantitative way. In the second chapter, we study the asymptotic of grazing collisions for the Boltzmann equation with soft and Coulomb potentials. We also give explicit rates of convergence (which are not optimal).Finally in the third and last chapter, we show the chaos propagation for some sub-critical Keller-Segel equation. To this aim, we use compactness arguments (tightness of the particle system) |
author2 |
Paris Est |
author_facet |
Paris Est Godinho Pereira, David |
author |
Godinho Pereira, David |
author_sort |
Godinho Pereira, David |
title |
Contribution à l'étude des équations de Boltzmann, Kac et Keller-Segel à l'aide d'équations différentielles stochastiques non linéaires |
title_short |
Contribution à l'étude des équations de Boltzmann, Kac et Keller-Segel à l'aide d'équations différentielles stochastiques non linéaires |
title_full |
Contribution à l'étude des équations de Boltzmann, Kac et Keller-Segel à l'aide d'équations différentielles stochastiques non linéaires |
title_fullStr |
Contribution à l'étude des équations de Boltzmann, Kac et Keller-Segel à l'aide d'équations différentielles stochastiques non linéaires |
title_full_unstemmed |
Contribution à l'étude des équations de Boltzmann, Kac et Keller-Segel à l'aide d'équations différentielles stochastiques non linéaires |
title_sort |
contribution à l'étude des équations de boltzmann, kac et keller-segel à l'aide d'équations différentielles stochastiques non linéaires |
publishDate |
2013 |
url |
http://www.theses.fr/2013PEST1085/document |
work_keys_str_mv |
AT godinhopereiradavid contributionaletudedesequationsdeboltzmannkacetkellersegelalaidedequationsdifferentiellesstochastiquesnonlineaires AT godinhopereiradavid contributiontothestudyofboltzmannskacsandkellersegelsequationswithnonlinearstochasticdifferentialsequations |
_version_ |
1718479545780142080 |