Contribution to nonlinear adaptive control of low inertia underwater robots

L'utilisation des véhicules sous-marins (ROV, AUV, gliders) s'est considérablement accrue ces dernières décennies, aussi bien dans le domaine de l'offshore ou de l'océanographie, que pour des applications militaires. Dans cette thèse, nous abordons le problème particulier de la...

Full description

Bibliographic Details
Main Author: Maalouf, Divine
Other Authors: Montpellier 2
Language:en
Published: 2013
Subjects:
Online Access:http://www.theses.fr/2013MON20196/document
id ndltd-theses.fr-2013MON20196
record_format oai_dc
collection NDLTD
language en
sources NDLTD
topic Commande adaptative
Robotique sous-marine
Systèmes non linéaires
Adaptive control
Underwater robotics
Nonlinear systems

spellingShingle Commande adaptative
Robotique sous-marine
Systèmes non linéaires
Adaptive control
Underwater robotics
Nonlinear systems

Maalouf, Divine
Contribution to nonlinear adaptive control of low inertia underwater robots
description L'utilisation des véhicules sous-marins (ROV, AUV, gliders) s'est considérablement accrue ces dernières décennies, aussi bien dans le domaine de l'offshore ou de l'océanographie, que pour des applications militaires. Dans cette thèse, nous abordons le problème particulier de la commande des véhicules sous-marins à faible inertie et fort rapport puissance/inertie. Ces derniers constituent des systèmes fortement non linéaires, dont la dynamique est susceptible de varier au cours du temps (charge embarquée, caractéristiques des propulseurs, variation de salinité...) et qui sont très sensibles aux perturbations environnementales (chocs, traction sur l'ombilical...). Afin d'assurer des performances de suivi de trajectoire satisfaisantes, il est nécessaire d'avoir recours à une commande adaptative qui compense les incertitudes ou les variations des paramètres du modèle dynamique, mais également qui rejette les perturbations, telles que les chocs. A cette fin, nous proposons dans ce manuscrit, l'étude théorique et la validation expérimentale de plusieurs lois de commande pour véhicules sous-marins. Nous analysons tout d'abord des approches classiques dans ce domaine (commande PID et commande par retour d'état non linéaire), puis nous les comparons avec deux autres architectures de commande. La première est la commande adaptative L1 non linéaire, introduite en 2010 notamment pour la commande des véhicules aériens, et implémentée pour la première fois sur un véhicule sous-marin. Le découplage entre adaptation et robustesse permet l'utilisation de très grands gains d'adaptation (et donc une convergence plus rapide des paramètres estimés, sans aucune connaissance a priori), sans pour autant dégrader la stabilité. La seconde méthode, que nous proposons et qui constitue l'apport principal de cette thèse, est une évolution de la commande L1, permettant d'en améliorer les performances lors du suivi d'une trajectoire variable. Nous présentons une analyse de stabilité de cette commande, ainsi que sa comparaison expérimentale avec les autres lois de commande (commande PID, commande adaptative par retour d'état non linéaire et commande adaptative L1 standard). Ces expérimentations ont été réalisées sur un mini-ROV et plusieurs scenarii ont été étudiés, permettant ainsi d'évaluer, pour chaque loi, sa robustesse et son aptitude à rejeter les perturbations. === Underwater vehicles have gained an increased interest in the last decades given the multiple tasks they can accomplish in various fields, ranging from scientific to industrial and military applications. In this thesis, we are particularly interested in the category of vehicles having a high power to weight ratio. Different challenges in autonomous control of such highly unstable systems arise from the inherent nonlinearities and the time varyingbehavior of their dynamics. These challenges can be increased by the low inertia of this class of vehicles combined with their powerful actuation. A self tuning controller is therefore required in order to avoid any performance degradation during a specific mission. The closed-loop system is expected to compensate for different kinds of disturbances or changes in the model parameters. To solve this problem, we propose in this work the design,analysis and experimental validation of different control schemes on an underwater vehicle. Classical methods are initially proposed, namely the PID controller and the nonlinear adaptive state feedback (NASF) one, followed by two more advanced schemes based on the recently developed L1 adaptive controller. This last method stands out among the other developed ones in its particular architecture where robustness and adaptation are decoupled. In this thesis, the original L1 adaptive controller has been designed and successfullyvalidated then an extended version of it is proposed in order to deal with the observed time lags occurring in presence of a varying reference trajectory. The stability of this latter controller is then analysed and real-time experimental results for different operating conditions are presented and discussed for each proposed controller, assessing their performance and robustness.
author2 Montpellier 2
author_facet Montpellier 2
Maalouf, Divine
author Maalouf, Divine
author_sort Maalouf, Divine
title Contribution to nonlinear adaptive control of low inertia underwater robots
title_short Contribution to nonlinear adaptive control of low inertia underwater robots
title_full Contribution to nonlinear adaptive control of low inertia underwater robots
title_fullStr Contribution to nonlinear adaptive control of low inertia underwater robots
title_full_unstemmed Contribution to nonlinear adaptive control of low inertia underwater robots
title_sort contribution to nonlinear adaptive control of low inertia underwater robots
publishDate 2013
url http://www.theses.fr/2013MON20196/document
work_keys_str_mv AT maaloufdivine contributiontononlinearadaptivecontroloflowinertiaunderwaterrobots
AT maaloufdivine contributionalacommandeadaptativenonlineairedesrobotssousmarinsafaibleinertie
_version_ 1719204197956583424
spelling ndltd-theses.fr-2013MON201962019-06-13T03:22:44Z Contribution to nonlinear adaptive control of low inertia underwater robots Contribution à la commande adaptative non linéaire des robots sous-marins à faible inertie Commande adaptative Robotique sous-marine Systèmes non linéaires Adaptive control Underwater robotics Nonlinear systems L'utilisation des véhicules sous-marins (ROV, AUV, gliders) s'est considérablement accrue ces dernières décennies, aussi bien dans le domaine de l'offshore ou de l'océanographie, que pour des applications militaires. Dans cette thèse, nous abordons le problème particulier de la commande des véhicules sous-marins à faible inertie et fort rapport puissance/inertie. Ces derniers constituent des systèmes fortement non linéaires, dont la dynamique est susceptible de varier au cours du temps (charge embarquée, caractéristiques des propulseurs, variation de salinité...) et qui sont très sensibles aux perturbations environnementales (chocs, traction sur l'ombilical...). Afin d'assurer des performances de suivi de trajectoire satisfaisantes, il est nécessaire d'avoir recours à une commande adaptative qui compense les incertitudes ou les variations des paramètres du modèle dynamique, mais également qui rejette les perturbations, telles que les chocs. A cette fin, nous proposons dans ce manuscrit, l'étude théorique et la validation expérimentale de plusieurs lois de commande pour véhicules sous-marins. Nous analysons tout d'abord des approches classiques dans ce domaine (commande PID et commande par retour d'état non linéaire), puis nous les comparons avec deux autres architectures de commande. La première est la commande adaptative L1 non linéaire, introduite en 2010 notamment pour la commande des véhicules aériens, et implémentée pour la première fois sur un véhicule sous-marin. Le découplage entre adaptation et robustesse permet l'utilisation de très grands gains d'adaptation (et donc une convergence plus rapide des paramètres estimés, sans aucune connaissance a priori), sans pour autant dégrader la stabilité. La seconde méthode, que nous proposons et qui constitue l'apport principal de cette thèse, est une évolution de la commande L1, permettant d'en améliorer les performances lors du suivi d'une trajectoire variable. Nous présentons une analyse de stabilité de cette commande, ainsi que sa comparaison expérimentale avec les autres lois de commande (commande PID, commande adaptative par retour d'état non linéaire et commande adaptative L1 standard). Ces expérimentations ont été réalisées sur un mini-ROV et plusieurs scenarii ont été étudiés, permettant ainsi d'évaluer, pour chaque loi, sa robustesse et son aptitude à rejeter les perturbations. Underwater vehicles have gained an increased interest in the last decades given the multiple tasks they can accomplish in various fields, ranging from scientific to industrial and military applications. In this thesis, we are particularly interested in the category of vehicles having a high power to weight ratio. Different challenges in autonomous control of such highly unstable systems arise from the inherent nonlinearities and the time varyingbehavior of their dynamics. These challenges can be increased by the low inertia of this class of vehicles combined with their powerful actuation. A self tuning controller is therefore required in order to avoid any performance degradation during a specific mission. The closed-loop system is expected to compensate for different kinds of disturbances or changes in the model parameters. To solve this problem, we propose in this work the design,analysis and experimental validation of different control schemes on an underwater vehicle. Classical methods are initially proposed, namely the PID controller and the nonlinear adaptive state feedback (NASF) one, followed by two more advanced schemes based on the recently developed L1 adaptive controller. This last method stands out among the other developed ones in its particular architecture where robustness and adaptation are decoupled. In this thesis, the original L1 adaptive controller has been designed and successfullyvalidated then an extended version of it is proposed in order to deal with the observed time lags occurring in presence of a varying reference trajectory. The stability of this latter controller is then analysed and real-time experimental results for different operating conditions are presented and discussed for each proposed controller, assessing their performance and robustness. Electronic Thesis or Dissertation Text en http://www.theses.fr/2013MON20196/document Maalouf, Divine 2013-11-22 Montpellier 2 Zapata, René