Conception et réalisation de capteurs biomimétiques à base de polymères à empreintes moléculaires à transduction électrochimique

Les biocapteurs sont des moyens d'analyse en plein essor à la fois rapides, sélectifs et peu coûteux, applicables à des domaines très variés (environnement, santé, agroalimentaire…). La capacité de reconnaissance moléculaire extraordinaire de biomolécules telles que les enzymes ou les anticorps...

Full description

Bibliographic Details
Main Author: Betatache, Amina
Other Authors: Lyon 1
Language:fr
Published: 2013
Subjects:
543
Online Access:http://www.theses.fr/2013LYO10250
Description
Summary:Les biocapteurs sont des moyens d'analyse en plein essor à la fois rapides, sélectifs et peu coûteux, applicables à des domaines très variés (environnement, santé, agroalimentaire…). La capacité de reconnaissance moléculaire extraordinaire de biomolécules telles que les enzymes ou les anticorps a été exploitée avec succès pour la réalisation de nombreux biocapteurs. Cependant, l'inconvénient majeur de ces récepteurs biologiques est qu'ils sont difficiles à produire et fragiles. Une manière de surmonter ces inconvénients consiste à les remplacer par des récepteurs artificiels présentant des propriétés de reconnaissance similaires. Parmi les matériaux biomimétiques prometteurs figurent les polymères à empreintes moléculaires (MIPs). Dans ce travail, nous nous sommes intéressés au développement de deux capteurs biomimétiques impédimétriques, le premier basé sur l'utilisation de poly(éthylène co-alcool vinylique) imprimé pour la détection de la créatinine et le deuxième sur des MIPs de polyméthacrylate pour la détection de la testostérone. Dans le premier cas, le polymère imprimé a été produit et déposé à la surface d'électrodes en or, soit par drop-coating, soit sous forme de nanofibres par la technique d'électrofilage. Dans le deuxième, le MIP a été synthétisé par polymérisation radicalaire de l'acide méthacrylique en présence d'éthylèneglycol diméthacrylate (réticulant), d'initiateur et de testostérone en utilisant la méthode du « grafting from » qui consiste à greffer d'abord l'initiateur sur la surface du transducteur mais pour la polymérisation on a utilisé deux approches (spin-coating d'une solution de prépolymérisation sur la surface du transducteur ou l'immersion de ce dernier dans la solution de monomère plus testostérone) suivie de l'exposition à une source d'energie pour effectuer la polymérisation. Les performances des capteurs (limite de détection, sélectivité, reproductibilité) ont ensuite été évaluées === Biosensors are rapid, selective and low-cost analytical devices of growing interest for a wide range of application fields (e.g. environment, food, health). The extraordinary molecular recognition capabilities of sensing biomolecules such as enzymes and antibodies have been successfully exploited in the elaboration of a number of biosensors. However, these biorecognition elements are often produced via complex and costful protocols and require specific handling conditions because of their poor stability. To circumvent these limitations, artificial receptors of similar recognition properties are now proposed as alternatives to natural receptors in sensor technology. Molecular imprinted polymers are among the most promising biomimetic materials reported. In this work, we developed two impedimetric biomimetic sensors. The first one is based on imprinted poly(ethylene co-vinyl alcohol) for creatinine detection and the second on polymethacrylate MIPs for testosterone analysis. In the first case, MIP was produced and deposited onto gold microelectrodes, either by spin-coating of a pre-polymerization solution, or by electrospinning. In the second case, MIPs were synthetized by photopolymerization of methacrylic acid in presence of ethyleneglycoldimethacrylate (cross-linker), an azo-initiator and testosterone as template using the “grafting from” method in which the initiator is first attached to the transducer surface but to effect polymerization we used two different approaches (dip-coating of a prepolymerization solution on the transducer surface functionalized with the initiator or immersing it in the solution of monomers and testosterone) followed by exposure to an energy source to effect polymerization. Then, analytical performances (linear range, detection limit, selectivity and reproducibility) of both creatinine and testosterone sensors were determined and compared