Modèles bayésiens pour la détection de synchronisations au sein de signaux électro-corticaux

Cette thèse propose de nouvelles méthodes d'analyse d'enregistrements cérébraux intra-crâniens (potentiels de champs locaux), qui pallie les lacunes de la méthode temps-fréquence standard d'analyse des perturbations spectrales événementielles : le calcul d'une moyenne sur les enr...

Full description

Bibliographic Details
Main Author: Rio, Maxime
Other Authors: Université de Lorraine
Language:fr
Published: 2013
Subjects:
Online Access:http://www.theses.fr/2013LORR0090/document
id ndltd-theses.fr-2013LORR0090
record_format oai_dc
spelling ndltd-theses.fr-2013LORR00902019-05-24T03:32:29Z Modèles bayésiens pour la détection de synchronisations au sein de signaux électro-corticaux Bayesian models for synchronizations detection in electrocortical signals Modèles bayésiens Synchronisations corticales Représentations temps-fréquence Analyse simple essai Distribution de Rice Inférence bayésienne variationnelle Bayesian models Cortical synchronisation Time-frequency representation Single trial analysis Rice distribution Variational bayesian inference 612.82 621.382 2 Cette thèse propose de nouvelles méthodes d'analyse d'enregistrements cérébraux intra-crâniens (potentiels de champs locaux), qui pallie les lacunes de la méthode temps-fréquence standard d'analyse des perturbations spectrales événementielles : le calcul d'une moyenne sur les enregistrements et l'emploi de l'activité dans la période pré-stimulus. La première méthode proposée repose sur la détection de sous-ensembles d'électrodes dont l'activité présente des synchronisations cooccurrentes en un même point du plan temps-fréquence, à l'aide de modèles bayésiens de mélange gaussiens. Les sous-ensembles d'électrodes pertinents sont validés par une mesure de stabilité calculée entre les résultats obtenus sur les différents enregistrements. Pour la seconde méthode proposée, le constat qu'un bruit blanc dans le domaine temporel se transforme en bruit ricien dans le domaine de l'amplitude d'une transformée temps-fréquence a permis de mettre au point une segmentation du signal de chaque enregistrement dans chaque bande de fréquence en deux niveaux possibles, haut ou bas, à l'aide de modèles bayésiens de mélange ricien à deux composantes. À partir de ces deux niveaux, une analyse statistique permet de détecter des régions temps-fréquence plus ou moins actives. Pour développer le modèle bayésien de mélange ricien, de nouveaux algorithmes d'inférence bayésienne variationnelle ont été créés pour les distributions de Rice et de mélange ricien. Les performances des nouvelles méthodes ont été évaluées sur des données artificielles et sur des données expérimentales enregistrées sur des singes. Il ressort que les nouvelles méthodes génèrent moins de faux-positifs et sont plus robustes à l'absence de données dans la période pré-stimulus This thesis promotes new methods to analyze intracranial cerebral signals (local field potentials), which overcome limitations of the standard time-frequency method of event-related spectral perturbations analysis: averaging over the trials and relying on the activity in the pre-stimulus period. The first proposed method is based on the detection of sub-networks of electrodes whose activity presents cooccurring synchronisations at a same point of the time-frequency plan, using bayesian gaussian mixture models. The relevant sub-networks are validated with a stability measure computed over the results obtained from different trials. For the second proposed method, the fact that a white noise in the temporal domain is transformed into a rician noise in the amplitude domain of a time-frequency transform made possible the development of a segmentation of the signal in each frequency band of each trial into two possible levels, a high one and a low one, using bayesian rician mixture models with two components. From these two levels, a statistical analysis can detect time-frequency regions more or less active. To develop the bayesian rician mixture model, new algorithms of variational bayesian inference have been created for the Rice distribution and the rician mixture distribution. Performances of the new methods have been evaluated on artificial data and experimental data recorded on monkeys. It appears that the new methods generate less false positive results and are more robust to a lack of data in the pre-stimulus period Electronic Thesis or Dissertation Text fr http://www.theses.fr/2013LORR0090/document Rio, Maxime 2013-07-16 Université de Lorraine Girau, Bernard Hutt, Axel
collection NDLTD
language fr
sources NDLTD
topic Modèles bayésiens
Synchronisations corticales
Représentations temps-fréquence
Analyse simple essai
Distribution de Rice
Inférence bayésienne variationnelle
Bayesian models
Cortical synchronisation
Time-frequency representation
Single trial analysis
Rice distribution
Variational bayesian inference
612.82
621.382 2
spellingShingle Modèles bayésiens
Synchronisations corticales
Représentations temps-fréquence
Analyse simple essai
Distribution de Rice
Inférence bayésienne variationnelle
Bayesian models
Cortical synchronisation
Time-frequency representation
Single trial analysis
Rice distribution
Variational bayesian inference
612.82
621.382 2
Rio, Maxime
Modèles bayésiens pour la détection de synchronisations au sein de signaux électro-corticaux
description Cette thèse propose de nouvelles méthodes d'analyse d'enregistrements cérébraux intra-crâniens (potentiels de champs locaux), qui pallie les lacunes de la méthode temps-fréquence standard d'analyse des perturbations spectrales événementielles : le calcul d'une moyenne sur les enregistrements et l'emploi de l'activité dans la période pré-stimulus. La première méthode proposée repose sur la détection de sous-ensembles d'électrodes dont l'activité présente des synchronisations cooccurrentes en un même point du plan temps-fréquence, à l'aide de modèles bayésiens de mélange gaussiens. Les sous-ensembles d'électrodes pertinents sont validés par une mesure de stabilité calculée entre les résultats obtenus sur les différents enregistrements. Pour la seconde méthode proposée, le constat qu'un bruit blanc dans le domaine temporel se transforme en bruit ricien dans le domaine de l'amplitude d'une transformée temps-fréquence a permis de mettre au point une segmentation du signal de chaque enregistrement dans chaque bande de fréquence en deux niveaux possibles, haut ou bas, à l'aide de modèles bayésiens de mélange ricien à deux composantes. À partir de ces deux niveaux, une analyse statistique permet de détecter des régions temps-fréquence plus ou moins actives. Pour développer le modèle bayésien de mélange ricien, de nouveaux algorithmes d'inférence bayésienne variationnelle ont été créés pour les distributions de Rice et de mélange ricien. Les performances des nouvelles méthodes ont été évaluées sur des données artificielles et sur des données expérimentales enregistrées sur des singes. Il ressort que les nouvelles méthodes génèrent moins de faux-positifs et sont plus robustes à l'absence de données dans la période pré-stimulus === This thesis promotes new methods to analyze intracranial cerebral signals (local field potentials), which overcome limitations of the standard time-frequency method of event-related spectral perturbations analysis: averaging over the trials and relying on the activity in the pre-stimulus period. The first proposed method is based on the detection of sub-networks of electrodes whose activity presents cooccurring synchronisations at a same point of the time-frequency plan, using bayesian gaussian mixture models. The relevant sub-networks are validated with a stability measure computed over the results obtained from different trials. For the second proposed method, the fact that a white noise in the temporal domain is transformed into a rician noise in the amplitude domain of a time-frequency transform made possible the development of a segmentation of the signal in each frequency band of each trial into two possible levels, a high one and a low one, using bayesian rician mixture models with two components. From these two levels, a statistical analysis can detect time-frequency regions more or less active. To develop the bayesian rician mixture model, new algorithms of variational bayesian inference have been created for the Rice distribution and the rician mixture distribution. Performances of the new methods have been evaluated on artificial data and experimental data recorded on monkeys. It appears that the new methods generate less false positive results and are more robust to a lack of data in the pre-stimulus period
author2 Université de Lorraine
author_facet Université de Lorraine
Rio, Maxime
author Rio, Maxime
author_sort Rio, Maxime
title Modèles bayésiens pour la détection de synchronisations au sein de signaux électro-corticaux
title_short Modèles bayésiens pour la détection de synchronisations au sein de signaux électro-corticaux
title_full Modèles bayésiens pour la détection de synchronisations au sein de signaux électro-corticaux
title_fullStr Modèles bayésiens pour la détection de synchronisations au sein de signaux électro-corticaux
title_full_unstemmed Modèles bayésiens pour la détection de synchronisations au sein de signaux électro-corticaux
title_sort modèles bayésiens pour la détection de synchronisations au sein de signaux électro-corticaux
publishDate 2013
url http://www.theses.fr/2013LORR0090/document
work_keys_str_mv AT riomaxime modelesbayesienspourladetectiondesynchronisationsauseindesignauxelectrocorticaux
AT riomaxime bayesianmodelsforsynchronizationsdetectioninelectrocorticalsignals
_version_ 1719192271757246464