Summary: | Cette thèse aborde la thématique de la comparaison et de la construction de diagnostics des connaissances dans les Environnements Informatiques pour l'Apprentissage Humain (EIAH). Ces diagnostics sont utilisés pour déterminer si les apprenants maîtrisent ou non les connaissances ou conceptions du domaine d'apprentissage (par exemple math au collège) à partir des traces collectées par l'EIAH. Bien que ces diagnostics soient récurrents dans les EIAH, ils sont fortement liés au domaine et ne sont que peu formalisés, si bien qu'il n'existe pas de méthode de comparaison pour les positionner entre eux et les valider. Pour la même raison, utiliser un diagnostic dans deux domaines différents implique souvent de le redévelopper en partie ou en totalité, sans réelle réutilisation. Pourtant, pouvoir comparer et réutiliser des diagnostics apporterait aux concepteurs d'EIAH plus de rigueur pour le choix, l'évaluation et le développement de ces diagnostics. Nous proposons une méthode d'assistance à la construction et à la comparaison de diagnostics des connaissances, réifiée dans une première plateforme, en se basant sur une formalisation du diagnostic des connaissances en EIAH que nous avons défini et sur l'utilisation de traces d'apprenant. L'assistance à la construction se fait via un algorithme d'apprentissage semi-automatique, guidé par le concepteur du diagnostic grâce à une ontologie décrivant les traces et les connaissances du domaine d'apprentissage. L'assistance à la comparaison se fait par application d'un ensemble de critères de comparaison (statistiques ou spécifiques aux EIAH) sur les résultats des différents diagnostics construits. La principale contribution au domaine est la généricité de notre méthode, applicable à un ensemble de diagnostics différents pour tout domaine d'apprentissage. Nous évaluons notre travail à travers trois expérimentations. La première porte sur l'application de la méthode à trois domaines différents (géométrie, lecture, chirurgie) en utilisant des jeux de traces en validation croisée pour construire et appliquer les critères de comparaison sur cinq diagnostics différents. La seconde expérimentation porte sur la spécification et l'implémentation d'un nouveau critère de comparaison spécifique aux EIAH : la comparaison des diagnostics en fonction de leur impact sur une prise de décision de l'EIAH, le choix d'un type d'aide à donner à l'apprenant. La troisième expérimentation traite de la spécification et de l'ajout d'un nouveau diagnostic dans notre plateforme, en collaborant avec une didacticienne. === Comparing and building knowledge diagnostic is a challenge in the field of Technology Enhanced Learning (TEL) systems. Knowledge diagnostic aims to infer the knowledge mastered or not by a student in a given learning domain (like mathematics for high school) using student traces recorded by the TEL system. Knowledge diagnostics are widely used, but they strongly depend on the learning domain and are not well formalized. Thus, there exists no method or tool to build, compare and evaluate different diagnostics applied on a given learning domain. Similarly, using a diagnostic in two different domain usually imply to implementing almost both from scratch. Yet, comparing and reusing knowledge diagnostics can lead to reduce the engineering cost, to reinforce the evaluation and finally help knowledge diagnostic designers to choose a diagnostic. We propose a method, refine in a first platform, to assist knowledge diagnostic designers to build and compare knowledge diagnostics, using a new formalization of the diagnostic and student traces. To help building diagnostics, we used a semi-automatic machine learning algorithm, guided by an ontology of the traces and the knowledge designed by the designer. To help comparing diagnostics, we use a set of comparison criteria (either statistical or specific to the field of TEL systems) applied on the results of each diagnostic on a given set of traces. The main contribution is that our method is generic over diagnostics, meaning that very different diagnostics can be built and compared, unlike previous work on this topic. We evaluated our work though three experiments. The first one was about applying our method on three different domains and set of traces (namely geometry, reading and surgery) to build and compare five different knowledge diagnostics in cross validation. The second experiment was about designing and implementing a new comparison criteria specific to TEL systems: the impact of knowledge diagnostic on a pedagogical decision, the choice of a type of help to give to a student. The last experiment was about designing and adding in our platform a new diagnostic, in collaboration with an expert in didactic.
|