Interactions fer/argile en conditions de stockage géologique profond : Impact d'activités bactériennes et d'hétérogénéités

La présente étude porte sur les interactions entre deux types de matériaux susceptibles d'être mis en jeu au sein d'un stockage géologique de déchets radioactifs : les matériaux métalliques, constituant notamment le surconteneur de déchets de haute activité, et les matériaux argileux, tell...

Full description

Bibliographic Details
Main Author: Chautard, Camille
Other Authors: Paris, ENMP
Language:fr
Published: 2013
Subjects:
Fer
550
Online Access:http://www.theses.fr/2013ENMP0044/document
Description
Summary:La présente étude porte sur les interactions entre deux types de matériaux susceptibles d'être mis en jeu au sein d'un stockage géologique de déchets radioactifs : les matériaux métalliques, constituant notamment le surconteneur de déchets de haute activité, et les matériaux argileux, telle que la roche hôte argileuse. Les interactions entre ces deux matériaux en conditions de stockage pourraient en effet modifier leurs propriétés de confinement initiales. Les travaux présentés ont visé à déterminer l'influence d'hétérogénéités (vides technologiques et fractures) et d'activités bactériennes sur ces interactions, notamment en termes d'évolution de propriétés chimiques et hydrauliques de l'argile. Dans cet objectif, deux expériences intégrées en cellules de percolation ont été mises en œuvre, à 60 °C, pendant 13 mois : la première en présence de deux souches bactériennes (BSR, BFR), la seconde constituant un témoin abiotique. Ces expérimentations ont permis la circulation d'une eau synthétique dont la composition est représentative de celle de l'eau porale de Tournemire au travers d'un compact de fer pulvérulent puis d'une carotte d'argilite du Toarcien de Tournemire, artificiellement fissurée. L'une des deux demi-carottes d'argile contenait également un cylindre de fer massif. Les caractérisations post-mortem (MEB, MEB/EDS, Raman, DRX, tomographie aux rayons X) ont permis d'étudier deux interfaces : l'interface fer pulvérulent/argilite et l'interface fer massif/argilite.Concernant le déroulement des expérimentations, il convient de noter en premier lieu que la fissure a probablement été circulante durant la totalité de l'essai, ce que tendent à confirmer les modélisations couplées chimie/transport avec le code HYTEC. Toutefois, aucune phase néoformée n'a été mise en évidence à son niveau. Par ailleurs, la survie bactérienne dans la cellule biotique a été confirmée au cours de l'expérimentation par le suivi régulier de la population et par une analyse de la diversité génétique à la fin des essais. Une nette diminution de la concentration en sulfates en sortie de cellule confirme l'activité des BSR.Les caractérisations solides en fin d'essais ont mis en évidence dans la zone de fer pulvérulent, avec et sans bactéries, de la magnétite et de la chukanovite, cette dernière étant localisée majoritairement à l'interface avec l'argilite. Une zone enrichie en fer (10 µm) a été identifié à l'interface dans l'argilite. La vitesse moyenne de corrosion du fer pulvérulent a été estimée à 0,2 µm/an (valeur basse). A l'interface fer massif/argilite, deux faciès ont été mis en évidence. Le premier faciès, identifié dans les deux dispositifs, est composé de chukanovite en couche interne et de sidérite en couche externe. L'extension de la perturbation de l'argilite est de l'ordre de 30 µm. Le second faciès, mis en évidence seulement en présence de bactéries, montre la présence de sulfure de fer (mackinawite) et d'avancées locales de corrosion. Enfin, les simulations HYTEC réalisées ont permis de mieux comprendre les mécanismes biogéochimiques observés expérimentalement, notamment l'effet du pH, et de mieux quantifier certains paramètres cinétiques clefs. === This study focuses on the interactions between two materials that may be introduced in a geological disposal of radioactive waste: metallic materials such as the high-level waste overpack, and clay materials such as the clay host rock. Indeed, the interactions between these two materials in such conditions could induce a change of their initial confinement properties. This work aimed at determining the influence of heterogeneities (technological gaps and fractures) and bacterial activities on these interactions, in terms of evolution of chemical and hydraulic properties of clayey materials. To this end, two percolation cells have been conducted during 13 months: the first one with two bacteria (SRB, IRB), the second one without bacteria. These experiments, carried out at 60°C, involved circulating synthetic water representative of the Tournemire pore water through iron powder and through Toarcian artificially cracked argillite from Tournemire. An iron rod was also placed into the argillite. Thus, solid characterizations (SEM, SEM/EDS, Raman, XRD, X-ray tomography) allowed the study of both interfaces: the iron powder/argillite interface and the iron rod/argillite interface.The water probably circulated into the crack during the entire test, which was confirmed by reactive transport modeling with the HYTEC reactive transport code. However, no secondary phase was identified in the crack. In addition, bacteria survival in the biotic cell was confirmed during the experiment by monitoring their population and by analyzing their genetic diversity at the end of the experiment. A strong decrease in sulfate concentration was measured in the output, which confirms the SRB activity.Solid characterization conducted at the end of the experiments have highlighted, with and without bacteria, the occurrence of magnetite and chukanovite in the iron powder, the latter being mainly located close to the argillite interface. In the argillite, a Fe-enriched zone (10 µm) was identified. The mean corrosion rate was estimated at 0.2 µm/y (lower bound). At the iron rod/argillite interface, two corrosion facies were observed. The first, identified in both cells, is mainly constituted of chukanovite in the inner layer and siderite in the outer layer. Extent of the argillite perturbation reaches about 30 µm. The second, only observed with bacteria, highlights the presence of iron sulfide precipitation (mackinawite) and localized corrosion patterns. Finally, HYTEC simulations have enabled us to better understand the observed biogeochemical processes, such as the pH effect, and to better quantify some key kinetic parameters.