Curvilinear Structures Segmentation and Tracking in Interventional Imaging

Cette thèse traite de la segmentation et du suivi de structures curvilinéaires. La méthodologie proposée est appliquée à la segmentation et au suivi des guide-fils durant les interventions d’angioplastie. Pendant ces opérations, les cardiologues s’assurent que le positionnement des différents outils...

Full description

Bibliographic Details
Main Author: Honnorat, Nicolas
Other Authors: Châtenay-Malabry, Ecole centrale de Paris
Language:en
Published: 2013
Subjects:
Online Access:http://www.theses.fr/2013ECAP0007/document
id ndltd-theses.fr-2013ECAP0007
record_format oai_dc
collection NDLTD
language en
sources NDLTD
topic Filtre orientable
Vote tensoriel
Recherche locale
Steerable Filters
Tensor Voting
Boosting

spellingShingle Filtre orientable
Vote tensoriel
Recherche locale
Steerable Filters
Tensor Voting
Boosting

Honnorat, Nicolas
Curvilinear Structures Segmentation and Tracking in Interventional Imaging
description Cette thèse traite de la segmentation et du suivi de structures curvilinéaires. La méthodologie proposée est appliquée à la segmentation et au suivi des guide-fils durant les interventions d’angioplastie. Pendant ces opérations, les cardiologues s’assurent que le positionnement des différents outils est correct au moyen d’un système d’imagerie fluoroscopique temps-réel. Les images obtenues sont très bruitées et les guides sont, en conséquence, particulièrement difficiles à segmenter. Les contributions de cette thèse peuvent être regroupées en trois parties. La première est consacrée à la détection des guides, la seconde a leur segmentation et la dernière a leur suivi. La détection partielle des guide-fils est réalisée soit par la sélection d’un opérateur de filtrage approprié soit en utilisant des méthodes modernes d’apprentissage artificiel. Dans un premier temps, un système réalisant un Boosting asymétrique pour entraîner un détecteur de guides est présenté. Par la suite, une méthode renforçant la réponse d’un filtre orientable au moyen d’une variante efficace de vote tensoriel est décrite. Dans la seconde partie, une approche ascendante est proposée, qui consiste à regrouper des points sélectionnés par le détecteur de fil, à extraire des primitives des agrégats obtenus et a les lier. Deux procédures locales de regroupement des points sont étudiées : une reposant sur un clustering de graphe non supervisé suivi d’une extraction de segments de droites ; et l’autre reposant sur un modèle graphique puis une extraction d’axe central. Par la suite, deux méthodes de liaison des primitives sont étudiées : la première repose sur une approche de programmation linéaire, et la seconde sur une heuristique de recherche locale. Dans la dernière partie, des méthodes de recalage sont utilisées pour améliorer la segmentation et pour suivre les fils. Le suivi propos´e couple un suivi iconique avec un suivi géométrique contenant un modèle prédictif. Cette méthode utilise un modèle graphique déterminant à la fois une position du guide-fil (segmentation) et des correspondances (tracking). La solution optimale de ce modèle graphique décrit simultanément les déplacements du guide-fil et les appariements entre points d’intérêt qui en sont extraits, fournissant ainsi une estimation robuste des déformations du fil par rapport aux grands déplacements et au bruit. === This thesis addresses the segmentation and the tracking of thin curvilinear structures. The proposed methodology is applied to the delineation and the tracking of the guide-wires that are used during cardiac angioplasty. During these interventions, cardiologists assess the displacement of the different devices with a real-time fluoroscopic imaging system. The obtained images are very noisy and, as a result, guide-wires are particularly challenging to segment and track. The contributions of this thesis can be grouped into three parts. The first part is devoted to the detection of the guide-wires, the second part addresses their segmentation and the last part focuses on their spatio-temporal tracking. Partial detection of guide-wires is addressed either through the selection of appropriate filter operators or using modern machine learning methods. First, a learning framework using an asymmetric Boosting algorithm for training a guidewire detector is presented. A second method enhancing the output of a steerable filter by using an efficient tensor voting variant is then described. In the second part, a bottom-up method is proposed, that consists in grouping points selected by the wire detector, in extracting primitives from these aggregates and in linking these primitives together. Two local grouping procedures are investigated: one based on unsupervised graph-based clustering followed by a linesegment extraction and one based on a graphical model formulation followed by a graph-based centerline extraction. Subsequently, two variants of linking methods are investigated: one is based on integer programming and one on a local search heuristic. In the last part, registration methods are exploited for improving the segmentation via an image fusion method and then for tracking the wires. This latter is performed by a graph-based iconic tracking method coupled with a graphbased geometric tracking that encodes to certain extend a predictive model. This method uses a coupled graphical model that seeks both optimal position (segmentation) and spatio-temporal correspondences (tracking). The optimal solution of this graphical model simultaneously determines the guide-wire displacements and matches the landmarks that are extracted along it, what provides a robust estimation of the wire deformations with respect to large motion and noise.
author2 Châtenay-Malabry, Ecole centrale de Paris
author_facet Châtenay-Malabry, Ecole centrale de Paris
Honnorat, Nicolas
author Honnorat, Nicolas
author_sort Honnorat, Nicolas
title Curvilinear Structures Segmentation and Tracking in Interventional Imaging
title_short Curvilinear Structures Segmentation and Tracking in Interventional Imaging
title_full Curvilinear Structures Segmentation and Tracking in Interventional Imaging
title_fullStr Curvilinear Structures Segmentation and Tracking in Interventional Imaging
title_full_unstemmed Curvilinear Structures Segmentation and Tracking in Interventional Imaging
title_sort curvilinear structures segmentation and tracking in interventional imaging
publishDate 2013
url http://www.theses.fr/2013ECAP0007/document
work_keys_str_mv AT honnoratnicolas curvilinearstructuressegmentationandtrackingininterventionalimaging
AT honnoratnicolas segmentationetsuividestructurescurvilineairesenimagerieinterventionnelle
_version_ 1719264043667030016
spelling ndltd-theses.fr-2013ECAP00072019-10-13T03:30:21Z Curvilinear Structures Segmentation and Tracking in Interventional Imaging Segmentation et suivi de structures curvilinéaires en imagerie interventionnelle Filtre orientable Vote tensoriel Recherche locale Steerable Filters Tensor Voting Boosting Cette thèse traite de la segmentation et du suivi de structures curvilinéaires. La méthodologie proposée est appliquée à la segmentation et au suivi des guide-fils durant les interventions d’angioplastie. Pendant ces opérations, les cardiologues s’assurent que le positionnement des différents outils est correct au moyen d’un système d’imagerie fluoroscopique temps-réel. Les images obtenues sont très bruitées et les guides sont, en conséquence, particulièrement difficiles à segmenter. Les contributions de cette thèse peuvent être regroupées en trois parties. La première est consacrée à la détection des guides, la seconde a leur segmentation et la dernière a leur suivi. La détection partielle des guide-fils est réalisée soit par la sélection d’un opérateur de filtrage approprié soit en utilisant des méthodes modernes d’apprentissage artificiel. Dans un premier temps, un système réalisant un Boosting asymétrique pour entraîner un détecteur de guides est présenté. Par la suite, une méthode renforçant la réponse d’un filtre orientable au moyen d’une variante efficace de vote tensoriel est décrite. Dans la seconde partie, une approche ascendante est proposée, qui consiste à regrouper des points sélectionnés par le détecteur de fil, à extraire des primitives des agrégats obtenus et a les lier. Deux procédures locales de regroupement des points sont étudiées : une reposant sur un clustering de graphe non supervisé suivi d’une extraction de segments de droites ; et l’autre reposant sur un modèle graphique puis une extraction d’axe central. Par la suite, deux méthodes de liaison des primitives sont étudiées : la première repose sur une approche de programmation linéaire, et la seconde sur une heuristique de recherche locale. Dans la dernière partie, des méthodes de recalage sont utilisées pour améliorer la segmentation et pour suivre les fils. Le suivi propos´e couple un suivi iconique avec un suivi géométrique contenant un modèle prédictif. Cette méthode utilise un modèle graphique déterminant à la fois une position du guide-fil (segmentation) et des correspondances (tracking). La solution optimale de ce modèle graphique décrit simultanément les déplacements du guide-fil et les appariements entre points d’intérêt qui en sont extraits, fournissant ainsi une estimation robuste des déformations du fil par rapport aux grands déplacements et au bruit. This thesis addresses the segmentation and the tracking of thin curvilinear structures. The proposed methodology is applied to the delineation and the tracking of the guide-wires that are used during cardiac angioplasty. During these interventions, cardiologists assess the displacement of the different devices with a real-time fluoroscopic imaging system. The obtained images are very noisy and, as a result, guide-wires are particularly challenging to segment and track. The contributions of this thesis can be grouped into three parts. The first part is devoted to the detection of the guide-wires, the second part addresses their segmentation and the last part focuses on their spatio-temporal tracking. Partial detection of guide-wires is addressed either through the selection of appropriate filter operators or using modern machine learning methods. First, a learning framework using an asymmetric Boosting algorithm for training a guidewire detector is presented. A second method enhancing the output of a steerable filter by using an efficient tensor voting variant is then described. In the second part, a bottom-up method is proposed, that consists in grouping points selected by the wire detector, in extracting primitives from these aggregates and in linking these primitives together. Two local grouping procedures are investigated: one based on unsupervised graph-based clustering followed by a linesegment extraction and one based on a graphical model formulation followed by a graph-based centerline extraction. Subsequently, two variants of linking methods are investigated: one is based on integer programming and one on a local search heuristic. In the last part, registration methods are exploited for improving the segmentation via an image fusion method and then for tracking the wires. This latter is performed by a graph-based iconic tracking method coupled with a graphbased geometric tracking that encodes to certain extend a predictive model. This method uses a coupled graphical model that seeks both optimal position (segmentation) and spatio-temporal correspondences (tracking). The optimal solution of this graphical model simultaneously determines the guide-wire displacements and matches the landmarks that are extracted along it, what provides a robust estimation of the wire deformations with respect to large motion and noise. Electronic Thesis or Dissertation Text en http://www.theses.fr/2013ECAP0007/document Honnorat, Nicolas 2013-01-17 Châtenay-Malabry, Ecole centrale de Paris Paragios, Nikos