Nouvelles méthodes multi-échelles pour l'analyse non-linéaire de la parole
Cette thèse présente une recherche exploratoire sur l'application du Formalisme Microcanonique Multiéchelles (FMM) à l'analyse de la parole. Dérivé de principes issus en physique statistique, le FMM permet une analyse géométrique précise de la dynamique non linéaire des signaux complexes....
Main Author: | |
---|---|
Other Authors: | |
Language: | en |
Published: |
2013
|
Subjects: | |
Online Access: | http://www.theses.fr/2013BOR14737/document |
id |
ndltd-theses.fr-2013BOR14737 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-theses.fr-2013BOR147372017-06-24T04:37:45Z Nouvelles méthodes multi-échelles pour l'analyse non-linéaire de la parole Novel multiscale methods for nonlinear speech analysis Analyse non-linéaire de la parole Analyse multi-échelles de la parole Formalisme microcanonique multi-échelles Exposants de singularité Segmentation phonétique Codage de la parole Détection des instants de fermeture glottale Analyse par prédiction linéaire parcimonieuse Non-linear speech analysis Multi-scale speech analysis Microcanonical multiscale formalism Singularity exponents Phonetic segmentation Speech coding Glottal closure instant detection Sparse linear prediction analysis Cette thèse présente une recherche exploratoire sur l'application du Formalisme Microcanonique Multiéchelles (FMM) à l'analyse de la parole. Dérivé de principes issus en physique statistique, le FMM permet une analyse géométrique précise de la dynamique non linéaire des signaux complexes. Il est fondé sur l'estimation des paramètres géométriques locaux (les exposants de singularité) qui quantifient le degré de prédictibilité à chaque point du signal. Si correctement définis est estimés, ils fournissent des informations précieuses sur la dynamique locale de signaux complexes. Nous démontrons le potentiel du FMM dans l'analyse de la parole en développant: un algorithme performant pour la segmentation phonétique, un nouveau codeur, un algorithme robuste pour la détection précise des instants de fermeture glottale, un algorithme rapide pour l’analyse par prédiction linéaire parcimonieuse et une solution efficace pour l’approximation multipulse du signal source d'excitation. This thesis presents an exploratory research on the application of a nonlinear multiscale formalism, called the Microcanonical Multiscale Formalism (the MMF), to the analysis of speech signals. Derived from principles in Statistical Physics, the MMF allows accurate analysis of the nonlinear dynamics of complex signals. It relies on the estimation of local geometrical parameters, the singularity exponents (SE), which quantify the degree of predictability at each point of the signal domain. When correctly defined and estimated, these exponents can provide valuable information about the local dynamics of complex signals and has been successfully used in many applications ranging from signal representation to inference and prediction.We show the relevance of the MMF to speech analysis and develop several applications to show the strength and potential of the formalism. Using the MMF, in this thesis we introduce: a novel and accurate text-independent phonetic segmentation algorithm, a novel waveform coder, a robust accurate algorithm for detection of the Glottal Closure Instants, a closed-form solution for the problem of sparse linear prediction analysis and finally, an efficient algorithm for estimation of the excitation source signal. Electronic Thesis or Dissertation Text en http://www.theses.fr/2013BOR14737/document Khanagha, Vahid 2013-01-16 Bordeaux 1 Yahia, Hussein Daoudi, Khalid |
collection |
NDLTD |
language |
en |
sources |
NDLTD |
topic |
Analyse non-linéaire de la parole Analyse multi-échelles de la parole Formalisme microcanonique multi-échelles Exposants de singularité Segmentation phonétique Codage de la parole Détection des instants de fermeture glottale Analyse par prédiction linéaire parcimonieuse Non-linear speech analysis Multi-scale speech analysis Microcanonical multiscale formalism Singularity exponents Phonetic segmentation Speech coding Glottal closure instant detection Sparse linear prediction analysis |
spellingShingle |
Analyse non-linéaire de la parole Analyse multi-échelles de la parole Formalisme microcanonique multi-échelles Exposants de singularité Segmentation phonétique Codage de la parole Détection des instants de fermeture glottale Analyse par prédiction linéaire parcimonieuse Non-linear speech analysis Multi-scale speech analysis Microcanonical multiscale formalism Singularity exponents Phonetic segmentation Speech coding Glottal closure instant detection Sparse linear prediction analysis Khanagha, Vahid Nouvelles méthodes multi-échelles pour l'analyse non-linéaire de la parole |
description |
Cette thèse présente une recherche exploratoire sur l'application du Formalisme Microcanonique Multiéchelles (FMM) à l'analyse de la parole. Dérivé de principes issus en physique statistique, le FMM permet une analyse géométrique précise de la dynamique non linéaire des signaux complexes. Il est fondé sur l'estimation des paramètres géométriques locaux (les exposants de singularité) qui quantifient le degré de prédictibilité à chaque point du signal. Si correctement définis est estimés, ils fournissent des informations précieuses sur la dynamique locale de signaux complexes. Nous démontrons le potentiel du FMM dans l'analyse de la parole en développant: un algorithme performant pour la segmentation phonétique, un nouveau codeur, un algorithme robuste pour la détection précise des instants de fermeture glottale, un algorithme rapide pour l’analyse par prédiction linéaire parcimonieuse et une solution efficace pour l’approximation multipulse du signal source d'excitation. === This thesis presents an exploratory research on the application of a nonlinear multiscale formalism, called the Microcanonical Multiscale Formalism (the MMF), to the analysis of speech signals. Derived from principles in Statistical Physics, the MMF allows accurate analysis of the nonlinear dynamics of complex signals. It relies on the estimation of local geometrical parameters, the singularity exponents (SE), which quantify the degree of predictability at each point of the signal domain. When correctly defined and estimated, these exponents can provide valuable information about the local dynamics of complex signals and has been successfully used in many applications ranging from signal representation to inference and prediction.We show the relevance of the MMF to speech analysis and develop several applications to show the strength and potential of the formalism. Using the MMF, in this thesis we introduce: a novel and accurate text-independent phonetic segmentation algorithm, a novel waveform coder, a robust accurate algorithm for detection of the Glottal Closure Instants, a closed-form solution for the problem of sparse linear prediction analysis and finally, an efficient algorithm for estimation of the excitation source signal. |
author2 |
Bordeaux 1 |
author_facet |
Bordeaux 1 Khanagha, Vahid |
author |
Khanagha, Vahid |
author_sort |
Khanagha, Vahid |
title |
Nouvelles méthodes multi-échelles pour l'analyse non-linéaire de la parole |
title_short |
Nouvelles méthodes multi-échelles pour l'analyse non-linéaire de la parole |
title_full |
Nouvelles méthodes multi-échelles pour l'analyse non-linéaire de la parole |
title_fullStr |
Nouvelles méthodes multi-échelles pour l'analyse non-linéaire de la parole |
title_full_unstemmed |
Nouvelles méthodes multi-échelles pour l'analyse non-linéaire de la parole |
title_sort |
nouvelles méthodes multi-échelles pour l'analyse non-linéaire de la parole |
publishDate |
2013 |
url |
http://www.theses.fr/2013BOR14737/document |
work_keys_str_mv |
AT khanaghavahid nouvellesmethodesmultiechellespourlanalysenonlineairedelaparole AT khanaghavahid novelmultiscalemethodsfornonlinearspeechanalysis |
_version_ |
1718463049905471488 |