Optimisation et caractérisation du couplage traction / torsion d'un stratifié pour le vrillage passif d'une pale

L'optimisation de la forme des pales en fonction des phases de vol constitue un levier puissant dans ladémarche d'amélioration des performances des hélicoptères et de minimisation de leurs impactsenvironnementaux. Cette thèse propose l'étude et la caractérisation d'un concept per...

Full description

Bibliographic Details
Main Author: Reveillon, Damien
Other Authors: Besançon
Language:fr
Published: 2013
Subjects:
623
Online Access:http://www.theses.fr/2013BESA2050
Description
Summary:L'optimisation de la forme des pales en fonction des phases de vol constitue un levier puissant dans ladémarche d'amélioration des performances des hélicoptères et de minimisation de leurs impactsenvironnementaux. Cette thèse propose l'étude et la caractérisation d'un concept permettant, grâce àl'utilisation d'un actionneur passif, de contrôler le vrillage d'une pale d'hélicoptère, en vol, en fonctionde la vitesse de rotation. L'actionneur retenu pour tordre une pale rigide est une plaque compositestratifiée munie d'un couplage traction/torsion et intégrée au sein de la pale. Les travaux développés ontpermis de démontrer la faisabilité de ce concept à l'échelle d'un prototype de partie courante de pale. Enpremier lieu, et ce afin de concevoir une architecture de profil adaptée à ce type de plaque, un modèleanalytique a été développé pour relier les caractéristiques des plaques composites à leur vrillage soussollicitations statique et dynamique. Une formulation simple de la réponse en vrillage a permisd'optimiser les séquencements de ces plaques dans l'objectif de maximiser le couplage en minimisant lesdéformations résiduelles liées au procédé de fabrication. Les plaques optimisées et fabriquées ontensuite été caractérisées sous traction quasi-statique uniforme puis sur un banc rotatif. Plusieurstechniques expérimentales ont été développées dans le but de quantifier le vrillage. Ce travail a conduità l'insertion d'une plaque épaisse dans un profil de pale. Sous un chargement statique, les tronçons ontexposé un vrillage de l'ordre de 2 °.m-1. Ces multiples expériences et les différentes simulationsréalisées permettent d'envisager des essais en soufflerie sur ces prototypes de pales. === Blade morphing optimization during a flight provides a powerful lever to improve helicoptersperformance and reduce their fossil based energy consumption. This PhD thesis examines a newconcept of passive blade twist controlled by the rotation speed. One of the most suitable actuator able totwist a stiff blade is an integrated laminate with extension/twist coupling. Developed work proves thefeasibility of this assembly at a laboratory scale. In a first stage, an analytical model was developed toestimate the twist behaviour of a laminate subjected to static and dynamic loads. This effectivecalculation of the twist response was used to optimize the stacking sequence in order to improve thecoupling and minimize residual stresses due to the manufacturing process. Some optimized plates havebeen manufactured and characterized using uniform tensile test and a rotative bench. Severalmeasurement methods have been developed to quantify twist. This study led to the integration of a thicklaminate in a blade airfoil profile. Under quasi-static axial loading, these blade sections have shownapproximately 2 °.m-1 in twist. Results from experiments and models make it possible to expect windtunnel tests on these adaptive twist blades.