Quasi stationary distributions when infinity is an entrance boundary : optimal conditions for phase transition in one dimensional Ising model by Peierls argument and its consequences
Cette thèse comporte deux chapitres principaux. Deux problèmes indépendants de Modélisation Mathématique y sont étudiés. Au chapitre 1, on étudiera le problème de l’existence et de l’unicité des distributions quasi-stationnaires (DQS) pour un mouvement Brownien avec dérive, tué en zéro dans le cas o...
Main Author: | Littin Curinao, Jorge Andrés |
---|---|
Other Authors: | Aix-Marseille |
Language: | en |
Published: |
2013
|
Subjects: | |
Online Access: | http://www.theses.fr/2013AIXM4789/document |
Similar Items
-
Quasi stationary distributions when infinity is an entrance boundary, optimal conditions for phase transitions in 1 dimensional ising model by peierls argument and its consequences
by: Littin Curinao, Jorge Andrés
Published: (2014) -
Tempered fractionally integrated process with stable noise as a transient anomalous diffusion model
by: Burnecki, K., et al.
Published: (2022) -
On Yaglom’s Law for the Interplanetary Proton Density and Temperature Fluctuations in Solar Wind Turbulence
by: Giuseppe Consolini, et al.
Published: (2020-12-01) -
Path Properties of Rare Events
by: Collingwood, Jesse
Published: (2015) -
Limit-point criteria for the matrix Sturm-Liouville operator and its powers
by: Irina N. Braeutigam
Published: (2017-01-01)