Déformation et construction de surfaces minimales

L'objet de cette thèse consiste en la construction de nouveaux exemples de surfaces (ou hypersurfaces) minimales dans les espaces euclidiens R^3, R^n x R avec n>2 ou dans l'espace homogène S^2 x R. Nous prouvons l'existence de surfaces minimales dans R^3 arbitrairement proches d�...

Full description

Bibliographic Details
Main Author: Coutant, Antoine
Other Authors: Paris Est
Language:en
fr
Published: 2012
Subjects:
Online Access:http://www.theses.fr/2012PEST1069/document
id ndltd-theses.fr-2012PEST1069
record_format oai_dc
spelling ndltd-theses.fr-2012PEST10692017-09-02T04:21:29Z Déformation et construction de surfaces minimales Deformation and construction of minimal surfaces Surface minimale Espace homogène Géométrie riemanienne Surface de Scherk Méthode de recollement Surface de Riemann Minimal manifold Homogeneous space Riemannian geometry Scherk's surface Riemann's surface Gluing method L'objet de cette thèse consiste en la construction de nouveaux exemples de surfaces (ou hypersurfaces) minimales dans les espaces euclidiens R^3, R^n x R avec n>2 ou dans l'espace homogène S^2 x R. Nous prouvons l'existence de surfaces minimales dans R^3 arbitrairement proches d'un polygone convexe. Nous prouvons également l'existence d'hypersurfaces minimales de type Riemann dans R^n x R, n>2. Celles-ci peuvent être interprétées comme étant une famille d'hyperplans horizontaux (des bouts) reliés les uns aux autres par des morceaux de caténoïdes déformés (des cous). Nous donnons un résultat général pour ce type d'objet quand il est périodique ou bien quand il a un nombre fini de bouts horizontaux. Cela se fait sous certaines hypothèses de contraintes sur les forces intervenant dans la construction. Nous finissons en donnant plusieurs exemples, notamment l'existence d'une hypersurface de type Wei verticale qui n'existe pas en dimension 3. Nous donnons aussi la preuve de l'existence d'une surface minimale de type Riemann dans S^2 x R telle que deux bouts sphériques sont reliés entre eux alternativement par 1 cou et 2 cous. Là aussi, nous mettons en évidence le rôle joué par les forces lors de la construction. De même que dans le chapitre précédent, la méthode repose sur un processus de recollement. Nous donnons une description très précise de la caténoïde et la surface de Riemann dans S^2 x R. Enfin, nous établissons l'existence dans R^n x R d'hypersurfaces de type Scherk lorsque n>2 This thesis is devoted to the construction of numerous examples of minimal surfaces (or hypersurfaces) in the $3$-Euclidean space, R^n x R with n>2 or in the homogeneous space S^2 x R . We prove the existence of minimal surfaces in R^3 as close as we want of a convex polygon. We prove the existence of minimal hypersurfaces in R^n x R, n>2, whose have Riemann's type. These ones could be considered as a family of horizontal hyperplanes (the ends) which are linked to each other by pieces of deformed catenoids (the necks). We provide a general result in the case simply-periodic together with the case of a finite number of hyperplanar ends. Our construction lies on some conditions associates with the forces that characterize the different configurations. We end with giving some examples ; in particular, we exhibit the existence of vertical Wei example that does not exists in the 3-dimensional case. We also prove the existence of the analogous of the Wei example in S^2 x R. The surface is such that two spherical ends are linked by 1 neck and 2 necks alternatively. Here again, we highlight the role that the forces play in the construction. Moreover, like in the previous chapter, the method lies on a gluing process. We give an accurate description of the catenoid and the Riemann's minimal example in S^2 x R. Finally, we demonstrate the existence of Scherk type hypersurfaces in R^n x R when n>2 Electronic Thesis or Dissertation Text en fr http://www.theses.fr/2012PEST1069/document Coutant, Antoine 2012-12-05 Paris Est Pacard, Frank
collection NDLTD
language en
fr
sources NDLTD
topic Surface minimale
Espace homogène
Géométrie riemanienne
Surface de Scherk
Méthode de recollement
Surface de Riemann
Minimal manifold
Homogeneous space
Riemannian geometry
Scherk's surface
Riemann's surface
Gluing method

spellingShingle Surface minimale
Espace homogène
Géométrie riemanienne
Surface de Scherk
Méthode de recollement
Surface de Riemann
Minimal manifold
Homogeneous space
Riemannian geometry
Scherk's surface
Riemann's surface
Gluing method

Coutant, Antoine
Déformation et construction de surfaces minimales
description L'objet de cette thèse consiste en la construction de nouveaux exemples de surfaces (ou hypersurfaces) minimales dans les espaces euclidiens R^3, R^n x R avec n>2 ou dans l'espace homogène S^2 x R. Nous prouvons l'existence de surfaces minimales dans R^3 arbitrairement proches d'un polygone convexe. Nous prouvons également l'existence d'hypersurfaces minimales de type Riemann dans R^n x R, n>2. Celles-ci peuvent être interprétées comme étant une famille d'hyperplans horizontaux (des bouts) reliés les uns aux autres par des morceaux de caténoïdes déformés (des cous). Nous donnons un résultat général pour ce type d'objet quand il est périodique ou bien quand il a un nombre fini de bouts horizontaux. Cela se fait sous certaines hypothèses de contraintes sur les forces intervenant dans la construction. Nous finissons en donnant plusieurs exemples, notamment l'existence d'une hypersurface de type Wei verticale qui n'existe pas en dimension 3. Nous donnons aussi la preuve de l'existence d'une surface minimale de type Riemann dans S^2 x R telle que deux bouts sphériques sont reliés entre eux alternativement par 1 cou et 2 cous. Là aussi, nous mettons en évidence le rôle joué par les forces lors de la construction. De même que dans le chapitre précédent, la méthode repose sur un processus de recollement. Nous donnons une description très précise de la caténoïde et la surface de Riemann dans S^2 x R. Enfin, nous établissons l'existence dans R^n x R d'hypersurfaces de type Scherk lorsque n>2 === This thesis is devoted to the construction of numerous examples of minimal surfaces (or hypersurfaces) in the $3$-Euclidean space, R^n x R with n>2 or in the homogeneous space S^2 x R . We prove the existence of minimal surfaces in R^3 as close as we want of a convex polygon. We prove the existence of minimal hypersurfaces in R^n x R, n>2, whose have Riemann's type. These ones could be considered as a family of horizontal hyperplanes (the ends) which are linked to each other by pieces of deformed catenoids (the necks). We provide a general result in the case simply-periodic together with the case of a finite number of hyperplanar ends. Our construction lies on some conditions associates with the forces that characterize the different configurations. We end with giving some examples ; in particular, we exhibit the existence of vertical Wei example that does not exists in the 3-dimensional case. We also prove the existence of the analogous of the Wei example in S^2 x R. The surface is such that two spherical ends are linked by 1 neck and 2 necks alternatively. Here again, we highlight the role that the forces play in the construction. Moreover, like in the previous chapter, the method lies on a gluing process. We give an accurate description of the catenoid and the Riemann's minimal example in S^2 x R. Finally, we demonstrate the existence of Scherk type hypersurfaces in R^n x R when n>2
author2 Paris Est
author_facet Paris Est
Coutant, Antoine
author Coutant, Antoine
author_sort Coutant, Antoine
title Déformation et construction de surfaces minimales
title_short Déformation et construction de surfaces minimales
title_full Déformation et construction de surfaces minimales
title_fullStr Déformation et construction de surfaces minimales
title_full_unstemmed Déformation et construction de surfaces minimales
title_sort déformation et construction de surfaces minimales
publishDate 2012
url http://www.theses.fr/2012PEST1069/document
work_keys_str_mv AT coutantantoine deformationetconstructiondesurfacesminimales
AT coutantantoine deformationandconstructionofminimalsurfaces
_version_ 1718525252011556864