Summary: | Les cellules cancéreuses utilisent une glycolyse anaérobie pour générer l'ATP au lieu de la phosphorylation oxydative. Cette spécificité métabolique offre certains avantages aux cellules cancéreuses: une prolifération rapide et une évasion immune qui implique la sous-régulation de l'expression du CMH-I à la surface des cellules, phénomène lié au changement métabolique. Dans nos expériences, nous forçons les cellules leucémiques à produire de l'énergie par phosphorylation oxydative en les incubant avec de la glutamine comme source d'énergie en absence de glucose. La respiration ainsi forcée induit une augmentation de la transcription et de l'expression du CMH-I. Ce changement de métabolisme induit aussi une augmentation de l'expression de MAPK ERK5 et son accumulation dans les mitochondries. ERK5 intervient dans les changements de l'expression du CMH-I et du métabolisme. La sur-régulation du CMH-I induite par la respiration est bloquée dans les cellules leucémiques exprimant le shRNA shERK5. ERK5 régule la transcription de l'histone désacétylase de classe III Sirtuin 1 par l'activation de sa cible MEF2, ayant pour conséquence la liaison de MEF2 au promoteur de SIRT1. La régulation transcriptionnelle de SIRT1 induite par ERK5 intervient dans la réponse antioxydante des cellules leucémiques, et la sous-régulation d'ERK5 affecte cette réponse antioxydante. L'augmentation du métabolisme de la glutamine observée dans les cellules leucémiques est initiée par la glutaminase (GLS), enzyme qui est le facteur limitant de la vitesse du métabolisme de la glutamine. miR-23a cible l'ARN messager de GLS et inhibe l'expression de GLS. Le milieu glutamine induit la translocation de p65 dans le noyau, qui mène à une augmentation de l'activité transcriptionnelle de p65. NF-KB p65 inhibe l'expression de miR-23a en amenant HDAC4 sur le promoteur de miR-23a. Cela permet aux cellules leucémiques d'augmenter l'utilisation de la glutamine en tant que source alternative de carbone. Ainsi, la respiration forcée dans les cellules leucémiques contrôle l'expression du CMH-I, la réponse antioxydante et facilite la prolifération tumorale. === Cancer cells have anaerobic-like glycolysis to generate ATPs instead of oxidative phosphorylation. This specific metabolism provides advantages to cancer cells: rapid growth and immune evasion, which involves downregulation of MHC-I at the cell surface and it is linked to metabolic change. In our experiments, we force leukemic cells to produce energy by oxidative phosphorylation by incubating them with glutamine as an energy source in the absence of glucose. The forced respiration increases MHC-I transcription and protein level. This change of metabolism also leads to increase MAPK ERK5 expression and accumulation in mitochondria. ERK5 mediates changes in both MHC-I and metabolism. The respiration-induced upregulation of MHC-I is blocked in leukemic cells stably expressing short hairpin ERK5 (shERK5). ERK5 transcriptionally regulates the class III histone deacetylase Sirtuin 1 through activation of its target MEF2 and subsequently MEF2 binding to SIRT1 promoter. The ERK5-induced transcriptional regulation of SIRT1 mediates the antioxidant response in leukemic cells and downregulation of ERK5 impairs the antioxidant response. The increased glutamine metabolism found in leukemic cells is initiated by glutaminase (GLS), a rate limiting enzyme for glutamine metabolism. miR-23a targets GLS mRNA and inhibits GLS expression. The glutamine medium induces p65 translocation to the nucleus that leads to increase p65 transcriptional activity. NF-KB p65 inhibits miR-23a expression by bringing HDAC4 to the miR-23a promoter. This allows leukemic cells to increase the use of glutamine as an alternative source of carbon. Thus, forcing respiration in leukemic cells controls MHC-I expression, antioxidant response and facilitate tumor growth.
|