Summary: | Cette thèse fait partie du projet FLUXOBAT (ANR-PRECODD 2008), qui a pour objectif global de développer une méthodologie robuste et fiable d4estimation des transferts de Composés Organiques Volatils (COV) du milieu souterrain vers l4air intérieur et extérieur. Ce travail concerne l4étude à l4échelle du laboratoire des transferts d4un COV type, le trichloréthylène (TCE), au travers d4un sol modèle (sable) et surtout du béton, en conditions isothermes et pour des milieux secs. Les moyens utilisés sont la modélisation numérique et une série d4expériences en laboratoire. Une étude préliminaire reproduisant des expériences existant dans la littérature dans le sable uniquement, a tout d4abord permis de mettre en place les outils expérimentaux et numériques nécessaires à la modélisation du problème, avant la réalisation de l4étude sur le matériau béton, bien plus complexe. L4étude des transferts dans le béton a été divisée en plusieurs étapes. Dans un premier temps, les transferts dans la pâte de ciment, plus homogène, ont été caractérisés. En particulier, la valeur du coefficient de sorption du TCE dans ce matériau a été obtenue à l4aide du suivi expérimental de la réponse à un « pulse » de polluant. Puis, les paramètres caractéristiques (porosité, perméabilité, ouverture des fissures, coefficient de diffusion effectif) des échantillons tests de « béton complet » ont été mesurés. Un protocole de caractérisation complète des galettes de béton a été mis au point, associé à la création d4un dispositif permettant la mise en place d4expériences de transferts du TCE (composé dont l4étude est complexifiée par son caractère particulièrement agressif) et applicables à tout milieu poreux consolidé. La problématique de l4hétérogénéité du béton, due à la présence de granulats et de fissures, a été traitée afin de proposer des équations de transfert moyennées donnant une meilleure description des transferts. Les conditions d4un cas de pollution « réel » ont été reproduites à l4échelle du laboratoire, sur un modèle réduit, dans une colonne de sable surmontée d4une galette de béton et d4une cavité en dépression représentant un bâtiment, pour étudier les transferts de TCE et valider la caractérisation développée dans l4étude. Les expériences de transferts réalisées sont reproductibles, ont été interprétées numériquement (sous Comsol multiphysics®), et ont permis de confirmer la pertinence de la simulation des transferts à l4aide de la caractérisation développée dans cette étude. Ce travail a permis de mettre, en particulier, en évidence l4importance de la caractérisation fine du béton, dont les propriétés et l4hétérogénéité sont des facteurs très influents sur les transferts, qui ne peuvent pas être décrits correctement avec des modèles analytiques simplifiés. Les résultats comportent l4estimation des paramètres caractérisant les transferts de COV dans le béton, et une compréhension fine des transferts du TCE dans ce matériau. === This thesis is part of the project FLUXOBAT (ANR-PRECODD 2008), which has the overall objective to develop, a robust and reliable methodology for estimating the transfer of Volatile Organic Compounds (VOC) from the soil to the indoor and outdoor air. This work concerns the study, at laboratory scale, of a typical VOC, the Trichlorethylene (TCE), transfer through a model soil (sand) and through the concrete material, under isothermal and dry conditions. Methods used include numerical modeling and a series of laboratory experiments. A preliminary study replicating experiences existing in the literature, with sand only, was first implemented to develop the tools necessary for experimental and numerical modeling of the problem, before the completion of the study with the concrete material, although more complex. The study of transfers in concrete has been divided into several stages. Initially, the transfers in the cement paste, more homogeneous, have been characterized. In particular, the value of the sorption coefficient of TCE in this material was obtained using the experimental response to a "pulse" of pollutant. Then the characteristic parameters (porosity, permeability, crack opening, effective diffusion coefficient) of "complete concrete" test samples were measured. A protocol for complete characterization of concrete slabs has been developed, associated with the creation of a device for the implementation of TCE transfer experiences (compound whose study is complicated by its very aggressive character) and applicable to any consolidated porous medium. The problem of heterogeneity of concrete, due to the presence of aggregates and cracks, has been treated to propose averaged transfer equations, giving a better description of the transfers. The conditions of a "real" pollution incident were reproduced in laboratory, modeled by a sand column topped by a concrete slab and a vacuum cavity representative of a building, in order to study the transfer of TCE and validate the characterization developed in the study. The transfer experiments are reproducible, were numerically interpreted (with COMSOL Multiphysics®), and have confirmed the relevance of the transfer simulation using the characterization developed in this study. This work has enabled, in particular, to highlight the importance of detailed characterization of the concrete, which properties and heterogeneity are exceedingly influential on transfers, and which cannot be described correctly with simplified analytical models. The results include the estimation of parameters characterizing the transfer of VOCs into the concrete, and a keen understanding of transfer of TCE in this material.
|