Statistical modeling and processing of high frequency ultrasound images : application to dermatologic oncology

Cette thèse étudie le traitement statistique des images d’ultrasons de haute fréquence, avec application à l’exploration in-vivo de la peau humaine et l’évaluation non invasive de lésions. Des méthodes Bayésiennes sont considérées pour la segmentation d’images échographiques de la peau. On y établit...

Full description

Bibliographic Details
Main Author: Pereyra, Marcelo
Other Authors: Toulouse, INPT
Language:en
Published: 2012
Subjects:
Online Access:http://www.theses.fr/2012INPT0044/document
Description
Summary:Cette thèse étudie le traitement statistique des images d’ultrasons de haute fréquence, avec application à l’exploration in-vivo de la peau humaine et l’évaluation non invasive de lésions. Des méthodes Bayésiennes sont considérées pour la segmentation d’images échographiques de la peau. On y établit que les ultrasons rétrodiffusés par la peau convergent vers un processus aléatoire complexe de type Levy-Flight, avec des statistiques non Gaussiennes alpha-stables. L’enveloppe du signal suit une distribution Rayleigh généralisée à queue lourde. A partir de ces résultats, il est proposé de modéliser l’image ultrason de multiples tissus comme un mélange spatialement cohérent de lois Rayleigh à queues lourdes. La cohérence spatiale inhérente aux tissus biologiques est modélisée par un champ aléatoire de Potts-Markov pour représenter la dépendance locale entre les composantes du mélange. Un algorithme Bayésien original combiné à une méthode Monte Carlo par chaine de Markov (MCMC) est proposé pour conjointement estimer les paramètres du modèle et classifier chaque voxel dans un tissu. L’approche proposée est appliquée avec succès à la segmentation de tumeurs de la peau in-vivo dans des images d’ultrasons de haute fréquence en 2D et 3D. Cette méthode est ensuite étendue en incluant l’estimation du paramètre B de régularisation du champ de Potts dans la chaine MCMC. Les méthodes MCMC classiques ne sont pas directement applicables à ce problème car la vraisemblance du champ de Potts ne peut pas être évaluée. Ce problème difficile est traité en adoptant un algorithme Metropolis-Hastings “sans vraisemblance” fondé sur la statistique suffisante du Potts. La méthode de segmentation non supervisée, ainsi développée, est appliquée avec succès à des images échographiques 3D. Finalement, le problème du calcul de la borne de Cramer-Rao (CRB) du paramètre B est étudié. Cette borne dépend des dérivées de la constante de normalisation du modèle de Potts, dont le calcul est infaisable. Ce problème est résolu en proposant un algorithme Monte Carlo original, qui est appliqué avec succès au calcul de la borne CRB des modèles d’Ising et de Potts. === This thesis studies statistical image processing of high frequency ultrasound imaging, with application to in-vivo exploration of human skin and noninvasive lesion assessment. More precisely, Bayesian methods are considered in order to perform tissue segmentation in ultrasound images of skin. It is established that ultrasound signals backscattered from skin tissues converge to a complex Levy Flight random process with non-Gaussian _-stable statistics. The envelope signal follows a generalized (heavy-tailed) Rayleigh distribution. Based on these results, it is proposed to model the distribution of multiple-tissue ultrasound images as a spatially coherent finite mixture of heavy-tailed Rayleigh distributions. Spatial coherence inherent to biological tissues is modeled by a Potts Markov random field. An original Bayesian algorithm combined with a Markov chain Monte Carlo method is then proposed to jointly estimate the mixture parameters and a label-vector associating each voxel to a tissue. The proposed method is successfully applied to the segmentation of in-vivo skin tumors in high frequency 2D and 3D ultrasound images. This method is subsequently extended by including the estimation of the Potts regularization parameter B within the Markov chain Monte Carlo (MCMC) algorithm. Standard MCMC methods cannot be applied to this problem because the likelihood of B is intractable. This difficulty is addressed by using a likelihood-free Metropolis-Hastings algorithm based on the sufficient statistic of the Potts model. The resulting unsupervised segmentation method is successfully applied to tridimensional ultrasound images. Finally, the problem of computing the Cramer-Rao bound (CRB) of B is studied. The CRB depends on the derivatives of the intractable normalizing constant of the Potts model. This is resolved by proposing an original Monte Carlo algorithm, which is successfully applied to compute the CRB of the Ising and Potts models.