Composition flexible par planification automatique

Nous nous positionnons dans un contexte d'informatique ambiante dans lequel il arrive que les besoins de l'utilisateur n'aient pas été prévus, notamment en situation exceptionnelle. Dans ce cas, il peut ne pas exister de système préconçu qui réponde exactement à ces besoins. Pour les...

Full description

Bibliographic Details
Main Author: Martin, Cyrille
Other Authors: Grenoble
Language:fr
Published: 2012
Subjects:
Online Access:http://www.theses.fr/2012GRENM094/document
Description
Summary:Nous nous positionnons dans un contexte d'informatique ambiante dans lequel il arrive que les besoins de l'utilisateur n'aient pas été prévus, notamment en situation exceptionnelle. Dans ce cas, il peut ne pas exister de système préconçu qui réponde exactement à ces besoins. Pour les satisfaire, il faut alors pouvoir composer les systèmes disponibles dans l'environnement, et le système composé doit permettre à l'utilisateur de faire des choix à l'exécution. Ainsi, l'utilisateur a la possibilité d'adapter l'exécution de la composition à son contexte. Cela signifie que la composition intègre des structures de contrôle de l'exécution, destinées à l'utilisateur : la composition est dite flexible. Dans cette thèse, nous proposons de répondre au problème de la composition flexible en contexte d'intelligence ambiante avec un planificateur produisant des plans flexibles. Dans un premier temps, nous proposons une modélisation de la planification flexible. Pour cela, nous définissons les opérateurs de séquence et d'alternative, utilisés pour caractériser les plans flexibles. Nous définissons deux autres opérateurs au moyen de la séquence et de l'alternative : l'entrelacement et l'itération. Nous nous référons à ce cadre théorique pour délimiter la flexibilité traitée par notre planificateur Lambda-Graphplan. L'originalité de Lambda-Graphplan est de produire des itérations en s'appuyant sur une approche par graphe de planification. Nous montrons notamment que Lambda-Graphplan est très performant avec les domaines se prêtant à la construction de structures itératives. === In a context of Ambient Intelligence, some of the user's needs might not be anticipated, e.g. when the user is in an unforeseen situation. In this case, there could exist no system that exactly meets their needs. By composing the available systems, the user could obtain a new system that satisfies their needs. In order to adapt the composition to the context, the composition must allow the user to make choices at runtime. So the composition includes control structures for the user: the composition is flexible. In this thesis, I deal with the problem of the flexible composition by automated planning. I propose a model of flexible planning. The sequence and the choice operators are defined and used to characterize flexible plans. Then, two other operators are derived from the sequence and the choice operators: the interleaving and the iteration operators. I refer to this framework to define the flexibility produced by my planner, Lambda-Graphplan, which is based on the planning graph. The originality of Lambda-Graphplan is to produce iterations. I show that Lambda-Graphplan is very efficient on domains that allow the construction of iterative structures.