Analyse des effets des déplacements atomiques induits par l’environnement radiatif spatial sur la conception des imageurs CMOS

L' imagerie spatiale est aujourd'hui un outil indispensable au développement durable, à la recherche et aux innovations scientifiques ainsi qu’à la sécurité et la défense. Fort de ses excellentes performances électro-optiques, de son fort taux d’intégration et de la faible puissance nécess...

Full description

Bibliographic Details
Main Author: Virmontois, Cédric
Other Authors: Toulouse, ISAE
Language:fr
Published: 2012
Subjects:
621
Online Access:http://www.theses.fr/2012ESAE0009/document
id ndltd-theses.fr-2012ESAE0009
record_format oai_dc
collection NDLTD
language fr
sources NDLTD
topic Capteur d’images CMOS
Effets non-ionisants
Déplacements atomiques
Courant d’obscurité
Signal télégraphique aléatoire
CMOS image sensor
Non-ionizing effects
Displacement damage
Dark current
Random telegraph signal
621
spellingShingle Capteur d’images CMOS
Effets non-ionisants
Déplacements atomiques
Courant d’obscurité
Signal télégraphique aléatoire
CMOS image sensor
Non-ionizing effects
Displacement damage
Dark current
Random telegraph signal
621
Virmontois, Cédric
Analyse des effets des déplacements atomiques induits par l’environnement radiatif spatial sur la conception des imageurs CMOS
description L' imagerie spatiale est aujourd'hui un outil indispensable au développement durable, à la recherche et aux innovations scientifiques ainsi qu’à la sécurité et la défense. Fort de ses excellentes performances électro-optiques, de son fort taux d’intégration et de la faible puissance nécessaire à son fonctionnement, le capteur d’images CMOS apparait comme un candidat sérieux pour ce type d’application. Cependant, cette technologie d’imageur doit être capable de résister à l’environnement radiatif spatial hostile pouvant dégrader les performances des composants électroniques. Un nombre important d’études précédentes sont consacrées à l’impact des effets ionisants sur les imageurs CMOS, montrant leur robustesse et des voies de durcissement face à de telles radiations. Les conclusions de ces travaux soulignent l’importance d’étudier les effets non-ionisants, devenant prépondérant dans les imageurs utilisant les dernières évolutions de la technologie CMOS. Par conséquent, l’objectif de ces travaux de thèse est d’étudier l’impact des effets non-ionisants sur les imageurs CMOS. Ces effets, regroupés sous le nom de déplacements atomiques, sont étudiés sur un nombre important de capteurs d’images CMOS et de structures de test. Ces dispositifs sont conçus avec des procédés de fabrication CMOS différents et en utilisant des variations de règle de dessin afin d’investiguer des tendances de dégradation commune à la technologie d’imager CMOS. Dans ces travaux, une équivalence entre les irradiations aux protons et aux neutrons est mise en évidence grâce à des caractéristiques courant-tension et des mesures de spectroscopie transitoire de niveau profond. Ces résultats soulignent la pertinence des irradiations aux neutrons pour étudier les effets non-ionisants. L’augmentation et la déformation de l’histogramme de courant d’obscurité ainsi que le signal télégraphique aléatoire associé, qui devient le facteur limitant des futures applications d’imagerie spatiale, sont évalué et modélisés. Des paramètres génériques d’évaluation des effets des déplacements atomiques sont mis en évidence, permettant de prévoir le comportement des capteurs d’images CMOS en environnement radiatif spatial. Enfin, des méthodes d’atténuation et des voies de durcissement des imageurs CMOS limitant l’impact des déplacements atomiques sont proposées. === Today, space imaging is an essential tool for sustainable development, research and scientific innovation as well as security and defense. Thanks to their good electro-optic performances and low power consumption, CMOS image sensors are serious candidates to equip future space instruments. However, it is important to know and understand the behavior of this imager technology when it faces the space radiation environment which could damage devices performances. Many previous studies have been focused on ionizing effects in CMOS imagers, showing their hardness and several hardening-by-design techniques against such radiations. The conclusions of these works emphasized the need to study non-ionizing effects which have become a major issue in the last generation of CMOS image sensors. Therefore, this research work focuses on non-ionizing effects in CMOS image sensors. These effects, also called displacement damage, are investigated on a large number of CMOS imagers and test structures. These devices are designed using several CMOS processes and using design rule changes in order to observe possible common behaviors in CMOS technology. Similarities have been shown between proton and neutron irradiations using current-voltage characteristics and deep level transient spectroscopy. These results emphasize the relevance of neutron irradiations for an accurate study of the non-ionizing effects. Then, displacement damage induced dark current increase as well as the associated random telegraph signal are measured and modeled. Common evaluation parameters to investigate displacement damage are found, allowing imager behavior prediction in space radiation environment. Finally, specific methods and hardening-by-design techniques to mitigate displacement damage are proposed.
author2 Toulouse, ISAE
author_facet Toulouse, ISAE
Virmontois, Cédric
author Virmontois, Cédric
author_sort Virmontois, Cédric
title Analyse des effets des déplacements atomiques induits par l’environnement radiatif spatial sur la conception des imageurs CMOS
title_short Analyse des effets des déplacements atomiques induits par l’environnement radiatif spatial sur la conception des imageurs CMOS
title_full Analyse des effets des déplacements atomiques induits par l’environnement radiatif spatial sur la conception des imageurs CMOS
title_fullStr Analyse des effets des déplacements atomiques induits par l’environnement radiatif spatial sur la conception des imageurs CMOS
title_full_unstemmed Analyse des effets des déplacements atomiques induits par l’environnement radiatif spatial sur la conception des imageurs CMOS
title_sort analyse des effets des déplacements atomiques induits par l’environnement radiatif spatial sur la conception des imageurs cmos
publishDate 2012
url http://www.theses.fr/2012ESAE0009/document
work_keys_str_mv AT virmontoiscedric analysedeseffetsdesdeplacementsatomiquesinduitsparlenvironnementradiatifspatialsurlaconceptiondesimageurscmos
AT virmontoiscedric analysisofdisplacementdamageeffectsoncmosimagesensordesign
_version_ 1718787668460961792
spelling ndltd-theses.fr-2012ESAE00092018-10-27T04:34:05Z Analyse des effets des déplacements atomiques induits par l’environnement radiatif spatial sur la conception des imageurs CMOS Analysis of displacement damage effects on CMOS image sensor design Capteur d’images CMOS Effets non-ionisants Déplacements atomiques Courant d’obscurité Signal télégraphique aléatoire CMOS image sensor Non-ionizing effects Displacement damage Dark current Random telegraph signal 621 L' imagerie spatiale est aujourd'hui un outil indispensable au développement durable, à la recherche et aux innovations scientifiques ainsi qu’à la sécurité et la défense. Fort de ses excellentes performances électro-optiques, de son fort taux d’intégration et de la faible puissance nécessaire à son fonctionnement, le capteur d’images CMOS apparait comme un candidat sérieux pour ce type d’application. Cependant, cette technologie d’imageur doit être capable de résister à l’environnement radiatif spatial hostile pouvant dégrader les performances des composants électroniques. Un nombre important d’études précédentes sont consacrées à l’impact des effets ionisants sur les imageurs CMOS, montrant leur robustesse et des voies de durcissement face à de telles radiations. Les conclusions de ces travaux soulignent l’importance d’étudier les effets non-ionisants, devenant prépondérant dans les imageurs utilisant les dernières évolutions de la technologie CMOS. Par conséquent, l’objectif de ces travaux de thèse est d’étudier l’impact des effets non-ionisants sur les imageurs CMOS. Ces effets, regroupés sous le nom de déplacements atomiques, sont étudiés sur un nombre important de capteurs d’images CMOS et de structures de test. Ces dispositifs sont conçus avec des procédés de fabrication CMOS différents et en utilisant des variations de règle de dessin afin d’investiguer des tendances de dégradation commune à la technologie d’imager CMOS. Dans ces travaux, une équivalence entre les irradiations aux protons et aux neutrons est mise en évidence grâce à des caractéristiques courant-tension et des mesures de spectroscopie transitoire de niveau profond. Ces résultats soulignent la pertinence des irradiations aux neutrons pour étudier les effets non-ionisants. L’augmentation et la déformation de l’histogramme de courant d’obscurité ainsi que le signal télégraphique aléatoire associé, qui devient le facteur limitant des futures applications d’imagerie spatiale, sont évalué et modélisés. Des paramètres génériques d’évaluation des effets des déplacements atomiques sont mis en évidence, permettant de prévoir le comportement des capteurs d’images CMOS en environnement radiatif spatial. Enfin, des méthodes d’atténuation et des voies de durcissement des imageurs CMOS limitant l’impact des déplacements atomiques sont proposées. Today, space imaging is an essential tool for sustainable development, research and scientific innovation as well as security and defense. Thanks to their good electro-optic performances and low power consumption, CMOS image sensors are serious candidates to equip future space instruments. However, it is important to know and understand the behavior of this imager technology when it faces the space radiation environment which could damage devices performances. Many previous studies have been focused on ionizing effects in CMOS imagers, showing their hardness and several hardening-by-design techniques against such radiations. The conclusions of these works emphasized the need to study non-ionizing effects which have become a major issue in the last generation of CMOS image sensors. Therefore, this research work focuses on non-ionizing effects in CMOS image sensors. These effects, also called displacement damage, are investigated on a large number of CMOS imagers and test structures. These devices are designed using several CMOS processes and using design rule changes in order to observe possible common behaviors in CMOS technology. Similarities have been shown between proton and neutron irradiations using current-voltage characteristics and deep level transient spectroscopy. These results emphasize the relevance of neutron irradiations for an accurate study of the non-ionizing effects. Then, displacement damage induced dark current increase as well as the associated random telegraph signal are measured and modeled. Common evaluation parameters to investigate displacement damage are found, allowing imager behavior prediction in space radiation environment. Finally, specific methods and hardening-by-design techniques to mitigate displacement damage are proposed. Electronic Thesis or Dissertation Text fr http://www.theses.fr/2012ESAE0009/document Virmontois, Cédric 2012-03-23 Toulouse, ISAE Magnan, Pierre