Modélisation et résolution de problèmes généralisés de tournées de véhicules

Le problème de tournées de véhicules est un des problèmes d’optimisation combinatoire les plus connus et les plus difficiles. Il s’agit de déterminer les tournées optimales pour une flotte de véhicules afin de servir un ensemble donné de clients. Dans les problèmes classiques de transport, chaque cl...

Full description

Bibliographic Details
Main Author: Ha, Minh Hoang
Other Authors: Nantes, Ecole des Mines
Language:fr
Published: 2012
Subjects:
Online Access:http://www.theses.fr/2012EMNA0068/document
Description
Summary:Le problème de tournées de véhicules est un des problèmes d’optimisation combinatoire les plus connus et les plus difficiles. Il s’agit de déterminer les tournées optimales pour une flotte de véhicules afin de servir un ensemble donné de clients. Dans les problèmes classiques de transport, chaque client est normalement servi à partir d’un seul nœud (ou arc). Pour cela, on définit toujours un ensemble donné de nœuds (ou arcs) obligatoires à visiter ou traverser, et on recherche la solution à partir de cet ensemble de nœuds (ou arcs). Mais dans plusieurs applications réelles où un client peut être servi à partir de plus d’un nœud, (ou arc), les problèmes généralisés qui en résultent sont plus complexes. Le but principal de cette thèse est d’étudier trois problèmes généralisés de tournées de véhicules. Le premier problème de la tournée sur arcs suffisamment proche (CEARP), comporte une application réelle intéressante en routage pour le relevé des compteurs à distance ; les deux autres problèmes, problème de tournées couvrantes multi-véhicules (mCTP) et problème généralisé de tournées sur nœuds (GVRP), permettent de modéliser des problèmes de conception des réseaux de transport à deux niveaux. Pour résoudre ces problèmes, nous proposons une approche exacte ainsi que des métaheuristiques. Pour développer la méthode exacte, nous formulons chaque problème comme un programme mathématique, puis nous construisons des algorithmes de type branchement et coupes. Les métaheuristiques sont basées sur le ELS (ou Evolutionary Local Search) et sur le GRASP (ou Greedy Randomized Adaptive Search Procedure). De nombreuses expérimentations montrent la performance de nos méthodes. === The Routing Problem is one of the most popular and challenging combinatorial optimization problems. It involves finding the optimal set of routes for fleet of vehicles in order to serve a given set of customers. In the classic transportation problems, each customer is normally served by only one node (or arc). Therefore, there is always a given set of required nodes (or arcs) that have to be visited or traversed, and we just need to find the solution from this set of nodes (or arcs). But in many real applications where a customer can be served by from more than one node (or arc), the generalized resulting problems are more complex. The primary goal of this thesis is to study three generalized routing problems. The first one, the Close-Enough Arc Routing Problem(CEARP), has an interesting real-life application to routing for meter reading while the others two, the multi-vehicle Covering Tour Problem (mCTP) and the Generalized Vehicle Routing Problem(GVRP), can model problems concerned with the design of bilevel transportation networks. The problems are solved by exact methods as well as metaheuristics. To develop exact methods, we formulate each problem as a mathematical program, and then develop branch-and-cut algorithms. The metaheuristics are based on the evolutionary local search (ELS) method et on the greedy randomized adaptive search procedure (GRASP) method. The extensive computational experiments show the performance of our methods.