Développement et analyse de schémas volumes finis motivés par la présentation de comportements asymptotiques. Application à des modèles issus de la physique et de la biologie

Cette thèse est dédiée au développement et à l’analyse de schémas numériques de type volumes finis pour des équations de convection-diffusion, qui apparaissent notamment dans des modèles issus de la physique ou de la biologie. Nous nous intéressons plus particulièrement à la préservation de comporte...

Full description

Bibliographic Details
Main Author: Bessemoulin-Chatard, Marianne
Other Authors: Clermont-Ferrand 2
Language:fr
en
Published: 2012
Subjects:
Online Access:http://www.theses.fr/2012CLF22300/document
id ndltd-theses.fr-2012CLF22300
record_format oai_dc
collection NDLTD
language fr
en
sources NDLTD
topic Schémas volumes finis
Comportements asymptotiques
Equations de convection-diffusion
Modèles de semi-conducteurs
Chimiotactisme
Inégalités fonctionnelles discrètes
Finite volume schemes
Asymptotic behaviors
Convection-diffusion equations
Semiconductors
Chemotaxis
Discrete functional inequalities

spellingShingle Schémas volumes finis
Comportements asymptotiques
Equations de convection-diffusion
Modèles de semi-conducteurs
Chimiotactisme
Inégalités fonctionnelles discrètes
Finite volume schemes
Asymptotic behaviors
Convection-diffusion equations
Semiconductors
Chemotaxis
Discrete functional inequalities

Bessemoulin-Chatard, Marianne
Développement et analyse de schémas volumes finis motivés par la présentation de comportements asymptotiques. Application à des modèles issus de la physique et de la biologie
description Cette thèse est dédiée au développement et à l’analyse de schémas numériques de type volumes finis pour des équations de convection-diffusion, qui apparaissent notamment dans des modèles issus de la physique ou de la biologie. Nous nous intéressons plus particulièrement à la préservation de comportements asymptotiques au niveau discret. Ce travail s’articule en trois parties, composées chacune de deux chapitres. Dans la première partie, nous considérons la discrétisation du système de dérive diffusion linéaire pour les semi-conducteurs par le schéma de Scharfetter-Gummel implicite en temps. Nous nous intéressons à la préservation par ce schéma de deux types d’asymptotiques : l’asymptotique en temps long et la limite quasi-neutre. Nous démontrons des estimations d’énergie–dissipation d’énergie discrètes qui permettent de prouver d’une part la convergence en temps long de la solution approchée vers une approximation de l’équilibre thermique, d’autre part la stabilité à la limite quasi-neutre du schéma. Dans la deuxième partie, nous nous intéressons à des schémas volumes finis préservant l’asymptotique en temps long dans un cadre plus général. Plus précisément, nous considérons des équations de type convection-diffusion non linéaires qui apparaissent dans plusieurs contextes physiques : équations des milieux poreux, système de dérive-diffusion pour les semi-conducteurs... Nous proposons deux discrétisations en espace permettant de préserver le comportement en temps long des solutions approchées. Dans un premier temps, nous étendons la définition du flux de Scharfetter-Gummel pour une diffusion non linéaire. Ce schéma fournit des résultats numériques satisfaisants si la diffusion ne dégénère pas. Dans un second temps, nous proposons une discrétisation dans laquelle nous prenons en compte ensemble les termes de convection et de diffusion, en réécrivant le flux sous la forme d’un flux d’advection. Le flux numérique est défini de telle sorte que les états d’équilibre soient préservés, et nous utilisons une méthode de limiteurs de pente pour obtenir un schéma précis à l’ordre deux en espace, même dans le cas dégénéré. Enfin, la troisième et dernière partie est consacrée à l’étude d’un schéma numérique pour un modèle de chimiotactisme avec diffusion croisée pour lequel les solutions n’explosent pas en temps fini, quelles que soient les données initiales. L’étude de la convergence du schéma repose sur une estimation d’entropie discrète nécessitant l’utilisation de versions discrètes d’inégalités fonctionnelles telles que les inégalités de Poincaré-Sobolev et de Gagliardo-Nirenberg-Sobolev. La démonstration de ces inégalités fait l’objet d’un chapitre indépendant dans lequel nous proposons leur étude dans un contexte assez général, incluant notamment le cas de conditions aux limites mixtes et une généralisation au cadre des schémas DDFV. === This dissertation is dedicated to the development and analysis of finite volume numericals chemes for convection-diffusion equations, which notably occur in models arising from physics and biology. We are more particularly interested in preserving asymptotic behavior at the discrete level. This dissertation is composed of three parts, each one including two chapters. In the first part, we consider the discretization of the linear drift-diffusion system for semiconductors with the implicit Scharfetter-Gummel scheme. We focus on preserving two kinds of asymptotics with this scheme : the long-time asymptotic and the quasineutral limit. We show discrete energy–energy dissipation estimates which constitute the main point to prove first the large time convergence of the approximate solution to an approximation of the thermal equilibrium, and then the stability at the quasineutral limit. In the second part, we are interested in designing finite volume schemes which preserve the long time behavior in a more general framework. More precisely, we consider nonlinear convection-diffusion equations arising in various physical models : porous media equation, drift-diffusion system for semiconductors... We propose two spatial discretizations which preserve the long time behavior of the approximate solutions. We first generalize the Scharfetter-Gummel flux for a nonlinear diffusion. This scheme provides satisfying numerical results if the diffusion term does not degenerate. Then we propose a discretization which takes into account together the convection and diffusion terms by rewriting the flux as an advective flux. The numerical flux is then defined in such a way that equilibrium states are preserved, and we use a slope limiters method so as to obtain second order space accuracy, even in the degenerate case. Finally, the third part is devoted to the study of a numerical scheme for a chemotaxis model with cross diffusion, for which the solutions do not blow up in finite time, even for large initial data. The proof of convergence is based on a discrete entropy estimate which requires the use of discrete functional inequalities such as Poincaré-Sobolev and Gagliardo-Nirenberg-Sobolev inequalities. The demonstration of these inequalities is the subject of an independent chapter in which we propose a study in quite a general framework, including mixed boundary conditions and generalization to DDFV schemes.
author2 Clermont-Ferrand 2
author_facet Clermont-Ferrand 2
Bessemoulin-Chatard, Marianne
author Bessemoulin-Chatard, Marianne
author_sort Bessemoulin-Chatard, Marianne
title Développement et analyse de schémas volumes finis motivés par la présentation de comportements asymptotiques. Application à des modèles issus de la physique et de la biologie
title_short Développement et analyse de schémas volumes finis motivés par la présentation de comportements asymptotiques. Application à des modèles issus de la physique et de la biologie
title_full Développement et analyse de schémas volumes finis motivés par la présentation de comportements asymptotiques. Application à des modèles issus de la physique et de la biologie
title_fullStr Développement et analyse de schémas volumes finis motivés par la présentation de comportements asymptotiques. Application à des modèles issus de la physique et de la biologie
title_full_unstemmed Développement et analyse de schémas volumes finis motivés par la présentation de comportements asymptotiques. Application à des modèles issus de la physique et de la biologie
title_sort développement et analyse de schémas volumes finis motivés par la présentation de comportements asymptotiques. application à des modèles issus de la physique et de la biologie
publishDate 2012
url http://www.theses.fr/2012CLF22300/document
work_keys_str_mv AT bessemoulinchatardmarianne developpementetanalysedeschemasvolumesfinismotivesparlapresentationdecomportementsasymptotiquesapplicationadesmodelesissusdelaphysiqueetdelabiologie
AT bessemoulinchatardmarianne developmentandanalysisoffinitevolumeschemesmotivatedbythepreservationofasymptoticbehaviorsapplicationtomodelsfromphysicsandbiology
_version_ 1718616620081872896
spelling ndltd-theses.fr-2012CLF223002018-03-15T04:19:15Z Développement et analyse de schémas volumes finis motivés par la présentation de comportements asymptotiques. Application à des modèles issus de la physique et de la biologie Development and analysis of finite volume schemes motivated by the preservation of asymptotic behaviors. Application to models from physics and biology. Schémas volumes finis Comportements asymptotiques Equations de convection-diffusion Modèles de semi-conducteurs Chimiotactisme Inégalités fonctionnelles discrètes Finite volume schemes Asymptotic behaviors Convection-diffusion equations Semiconductors Chemotaxis Discrete functional inequalities Cette thèse est dédiée au développement et à l’analyse de schémas numériques de type volumes finis pour des équations de convection-diffusion, qui apparaissent notamment dans des modèles issus de la physique ou de la biologie. Nous nous intéressons plus particulièrement à la préservation de comportements asymptotiques au niveau discret. Ce travail s’articule en trois parties, composées chacune de deux chapitres. Dans la première partie, nous considérons la discrétisation du système de dérive diffusion linéaire pour les semi-conducteurs par le schéma de Scharfetter-Gummel implicite en temps. Nous nous intéressons à la préservation par ce schéma de deux types d’asymptotiques : l’asymptotique en temps long et la limite quasi-neutre. Nous démontrons des estimations d’énergie–dissipation d’énergie discrètes qui permettent de prouver d’une part la convergence en temps long de la solution approchée vers une approximation de l’équilibre thermique, d’autre part la stabilité à la limite quasi-neutre du schéma. Dans la deuxième partie, nous nous intéressons à des schémas volumes finis préservant l’asymptotique en temps long dans un cadre plus général. Plus précisément, nous considérons des équations de type convection-diffusion non linéaires qui apparaissent dans plusieurs contextes physiques : équations des milieux poreux, système de dérive-diffusion pour les semi-conducteurs... Nous proposons deux discrétisations en espace permettant de préserver le comportement en temps long des solutions approchées. Dans un premier temps, nous étendons la définition du flux de Scharfetter-Gummel pour une diffusion non linéaire. Ce schéma fournit des résultats numériques satisfaisants si la diffusion ne dégénère pas. Dans un second temps, nous proposons une discrétisation dans laquelle nous prenons en compte ensemble les termes de convection et de diffusion, en réécrivant le flux sous la forme d’un flux d’advection. Le flux numérique est défini de telle sorte que les états d’équilibre soient préservés, et nous utilisons une méthode de limiteurs de pente pour obtenir un schéma précis à l’ordre deux en espace, même dans le cas dégénéré. Enfin, la troisième et dernière partie est consacrée à l’étude d’un schéma numérique pour un modèle de chimiotactisme avec diffusion croisée pour lequel les solutions n’explosent pas en temps fini, quelles que soient les données initiales. L’étude de la convergence du schéma repose sur une estimation d’entropie discrète nécessitant l’utilisation de versions discrètes d’inégalités fonctionnelles telles que les inégalités de Poincaré-Sobolev et de Gagliardo-Nirenberg-Sobolev. La démonstration de ces inégalités fait l’objet d’un chapitre indépendant dans lequel nous proposons leur étude dans un contexte assez général, incluant notamment le cas de conditions aux limites mixtes et une généralisation au cadre des schémas DDFV. This dissertation is dedicated to the development and analysis of finite volume numericals chemes for convection-diffusion equations, which notably occur in models arising from physics and biology. We are more particularly interested in preserving asymptotic behavior at the discrete level. This dissertation is composed of three parts, each one including two chapters. In the first part, we consider the discretization of the linear drift-diffusion system for semiconductors with the implicit Scharfetter-Gummel scheme. We focus on preserving two kinds of asymptotics with this scheme : the long-time asymptotic and the quasineutral limit. We show discrete energy–energy dissipation estimates which constitute the main point to prove first the large time convergence of the approximate solution to an approximation of the thermal equilibrium, and then the stability at the quasineutral limit. In the second part, we are interested in designing finite volume schemes which preserve the long time behavior in a more general framework. More precisely, we consider nonlinear convection-diffusion equations arising in various physical models : porous media equation, drift-diffusion system for semiconductors... We propose two spatial discretizations which preserve the long time behavior of the approximate solutions. We first generalize the Scharfetter-Gummel flux for a nonlinear diffusion. This scheme provides satisfying numerical results if the diffusion term does not degenerate. Then we propose a discretization which takes into account together the convection and diffusion terms by rewriting the flux as an advective flux. The numerical flux is then defined in such a way that equilibrium states are preserved, and we use a slope limiters method so as to obtain second order space accuracy, even in the degenerate case. Finally, the third part is devoted to the study of a numerical scheme for a chemotaxis model with cross diffusion, for which the solutions do not blow up in finite time, even for large initial data. The proof of convergence is based on a discrete entropy estimate which requires the use of discrete functional inequalities such as Poincaré-Sobolev and Gagliardo-Nirenberg-Sobolev inequalities. The demonstration of these inequalities is the subject of an independent chapter in which we propose a study in quite a general framework, including mixed boundary conditions and generalization to DDFV schemes. Electronic Thesis or Dissertation Text fr en http://www.theses.fr/2012CLF22300/document Bessemoulin-Chatard, Marianne 2012-11-30 Clermont-Ferrand 2 Chainais-Hillairet, Claire Filbet, Francis