Summary: | Les télécommunications laser en espace libre sont limitées en portée par la turbulence atmosphérique. L'optique adaptative, par la correction de la phase turbulente à l'émission du faisceau, a permis d'étendre leur domaine d'exploitation.Toutefois, sur de longues distances de propagation, cette correction n'est plus suffisante et il faut également précompenser l'amplitude du faisceau émis. De premières études numériques ont montré que le principe de retournement temporel, ou plus exactement de conjugaison de phase bidirectionnelle itérative, conduirait à des conditions satisfaisantes de focalisation du faisceau laser en fort régime de turbulence.Le principe de conjugaison de phase n'ayant été étudié que théoriquement jusque-là, mon travail de thèse s'est attaché à mettre en oeuvre un démonstrateur expérimental pour quantifier les performances de cette technique dans des conditions maîtrisées. En parallèle, une simulation de bout en bout de l'expérience a permis d'évaluer l'influence d'erreurs d'étalonnage sur les performances finales de la correction et de valider les résultats expérimentaux obtenus. Les points durs de la mise en oeuvre d'un système de télécommunications laser en espace libre ont ainsi été identifiés.L'ensemble de ces travaux constitue la toute première démonstration expérimentale du principe de retournement temporel optique. D'autres domaines d'application comme les lasers de puissance ou la propagation à travers des milieux biologiques très diffusants, nécessitant également de corriger le faisceau à l'émission, sont concernés. === Free Space Optical communications (FSO) are range limited due to atmospheric turbulence. Adaptive optics can mitigate turbulence effects by adding a phase modulation on the emitted laser beam. However, both phase and amplitude modulation are needed to perform long range FSO. Previous numerical studies have shown that iterative phase conjugation is an efficient modulation technique for lasercom systems.This PhD thesis is dedicated to the development and the realization of the first experimental demonstration of the iterative phase conjugation principle in a controlled turbulence environment. An optical bench, representative of a long range propagation through strong turbulence, has been scaled down to few-meters propagation in visible.Several methods for complex field measurement and modulation are numerically studied. Selected methods are implemented and tested, such as a novel focal plane technique for complex field measurement. Finally, iterative phase conjugation is performed and results cross-correlated with an end-to-end model representative of the optical bench.This work is the first experimental demonstration of the optical phase conjugation principle. Applications can be found in other fields than lasercoms, such as high power lasers or propagation through highly diffusing biological tissues, both in need of laser emission modulation.
|