Summary: | Nous avons analysé par cryomicroscopie électronique la morphologie et la structure de longues chaines d’ADN condensées par un polycation tétravalent, la spermine (polyamine). Les expériences ont été réalisées i) avec des solutions de chaînes diluées et ii) avec des chaines isolées confinées dans la capside d’un virus.Les expériences ont été réalisées avec de l’ADN Lambda (48kbp) en solution diluée (0.03 mM Ph) et à faible concentration ionique (10 mM Tris HCl, 1 mM EDTA, pH 7.6). Nous avons exploré une large gamme de concentrations en spermine, allant du seuil de précipitation (0.05 mM sp) jusqu’à la limite de re-solubilization et au-delà (400 mM sp). Seize minutes après mélange de l’ADN et de la spermine, les échantillons sont piégés en film mince et vitrifiés à basse température pour garder intactes les conditions ioniques, puis imagés à basse température sous faibles doses d’électrons (cryoMET). La plupart des chaînes d’ADN forment des agrégats de tores de structure hexagonale avec des interdistances entre hélices de 2.93, 2.88, et 2.95 nm pour des concentrations en spermine respectivement égales à 0.05, 1 et 100 mM spermine, ce qui est en bon accord avec les données collectées précédemment par diffraction des rayons X. A concentration plus élevée en spermine (200mM), les tores hexagonaux sont remplacés par des faisceaux cholestériques de structure plus lâche (3.32 nm entre hélices). Nous en déduisons que la forme comme la structure des condensats cristallins liquides ADN-sp sont liées aux interdistances entre hélices et déterminés par les conditions ioniques i.e. par l’énergie cohésive entre chaînes d’ADN. En dehors du domaine de précipitation (400mM sp), les molécules d’ADN forment un réseau soluble de fines fibres (4-6nm de diamètre) qui nous amènent à reconsidérer l’état de ces chaiînes en présence de spermine. Nous avons également conçu des expériences pour visualiser les agrégats formés 6 à 60 sec après addition de la spermine dans les mêmes conditions de tampon. Parmi les nombreuses formes originales que nous avons observées (absentes après 16 min), la présence de fibres étirées ou en hélice, visibles seulement après 9sec, nous conduit à proposer que les chaines d’ADN soient immédiatement étirées après addition de spermine puis relaxent sous forme de fibres hélicoïdales qui donnent naissance à de petits toroids (comprenant quelquefois moins d’une chaine) qui grandissent et fusionnent. Nous avons également analysé les dimensions de l’ensemble des tores observés et montré l’existence de contraintes géométriques qui restent à élucider. Puisqu’il était généralement impossible de prévenir l’agrégation des chaines d’ADN, nous avons choisi une autre approche pour analyser le collapse de chaines d’ADN individuelles. Nous avons utilisé une population de virus T5 contenant une fraction de leur génome initial (12-54 kbp). La molécule d’ADN, initialement confinée dans le petit volume de la capside (de de 80nm diamètre) est collapsée par addition de spermine. Par comparaison avec le premier jeu de données, nous avons travaillé à concentration plus élevée en ADN (0.45 mM Phosphates dans l’ensemble de l’échantillon) et la concentration en spermine a été ajustée entre 0.05 et 0.5 mM (ce qui correspond à des rapports de charges +/- bien inférieurs). Ces expériences ont donc été réalisées au voisinage de la ligne de précipitation, dans la « région de coexistence », entre le domaine où les chaines sont en condition de pelote et le domaine ou les chaines sont toutes collapsées sous forme de tores. Nous avons montré l’existence de formes intermédiaires entre ces deux états que nous appelons « tores chevelus » dans lesquels une partie de la molécule est condensées dans le tore alors que l’autre partie reste non condensée. Les distances entre hélices ont également été mesurées. Elles sont plus grandes dans ces structures intermédiaires que dans les tores formés à plus forte concentration en spermine. Ces deux séries d’expériences montrent l’intérêt des méthodes de cryo-microscopie pour étudier la structure locale des phases condensées de l’ADN. Nous avons montré comment le confinement modifie le comportement de l’ADN en solution et l’intérêt d’étudier ces effets compte tenu de son importance dans le contexte biologique. === By using cryo-electron microscopy, we analyzed the morphology and structure of long double-stranded DNA chains condensed upon addition of varying amounts of the tetravalent polycation spermine (polyamine). Experiments have been performed i) with chains diluted in the bulk and ii) with individual chains confined in a virus capsid.Bulk experiments have been done with lambda DNA (48.5 kbp) at low concentration (0.03 mM Ph) and in low salt conditions (10 mM Tris HCl, 1 mM EDTA, pH 7.6). We explored a wide range of spermine concentration, from the onset of precipitation (0.05 mM sp) up to above the resolubilization limit (400 mM sp). Sixteen min after mixing spermine and DNA, samples have been trapped in thin films and vitrified in liquid ethane to keep ionic conditions unchanged, and imaged at low temperature with low doses of electrons (cryoTEM). DNA chains mostly form large aggregates of toroids in which DNA chains are hexagonally packed with interhelical spacings of 2.93, 2.88, and 2.95 nm at 0.05, 1 and 100 mM spermine, respectively, in agreement with previous X-ray data. At higher spermine concentration (200 mM), hexagonal toroids are replaced by cholesteric bundles with a larger interhelical spacing (3.32 nm). We conclude that the shape and the structure of the liquid crystalline sp-DNA condensates are linked to the DNA interhelix spacing and determined by the ionic conditions i.e. by the cohesive energy between DNA strands. Outside of the precipitation domain (400 mM spermine), DNA chains form a soluble network of thin fibers (4-6 nm in diameter) that let us reconsider the state of these DNA chains in excess of spermine. We also designed experiments to visualize condensates formed 6-60 sec after mixing Lambda DNA with 0.05 mM spermine, under identical buffer conditions. Among multiple original shapes (not found after 16 min), the presence of stretched and helical elongated fibers seen only 9sec after addition of spermine let us propose that DNA chains are immediately stretched upon addition of spermine, relax into helical structures and finally form small toroids (containing in some cases less than one Lambda chain) that further grow and aggregate. We also analyzed the dimensions and structural details of the complete collection of toroids, and reveal the existence of geometric constraints that remain to be clarified. Since it was only exceptionally possible to prevent the aggregation of DNA in dilute solution, we used another approach to observe the collapse of single DNA chains. We handled a population of T5 viruses containing a fraction of their initial genome (12-54 kbp long). The Na-DNA chain, initially confined in the small volume of the capsid (80nm in diameter) is collapsed by the addition of spermine. Compared to the first set of experiments, we explored a higher DNA concentration range (0.45 mM Phosphates in the whole sample) and the spermine concentration was varied from 0.05 to 0.5 mM (which corresponds to much lower +/- charge ratios). Experiments are thus performed close to the precipitation line, in the coexistence region, between the region where all chains are in a coil conformation, and the region where all chains are collapsed into toroids. We describe the existence of intermediate states between the coil and the toroidal globule that were not reported yet. In these “hairy toroids”, part of the DNA chain is condensed in the toroid and the other part stays uncondensed outside of it. The interhelical spacing was also measured; it is larger in these partly-condensed toroids than in the fully organized toroids formed at higher spermine concentration.These two series of experiments show the interest of cryoEM to analyze the structural polymorphism and local structure of spermine-DNA aggregates. We also demonstrated how the confinement interferes with DNA condensation and the interest to investigate such effects that are important in the biological context.
|