Steady state and picosecond pulse radiolysis study of highly concentrated aqueous solutions
Le mécanisme de radiolyse de l’eau est bien établi. Sous l’effet des rayonnements ionisants, les produits de la radiolyse de l’eau pure sont les radicaux et les produits moléculaires tels que les électrons solvatés, les atomes hydrogènes, les radicaux hydroxyles, le peroxyde d’hydrogène et les ions...
Main Author: | |
---|---|
Other Authors: | |
Language: | en |
Published: |
2011
|
Subjects: | |
Online Access: | http://www.theses.fr/2011PA112306 |
id |
ndltd-theses.fr-2011PA112306 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
en |
sources |
NDLTD |
topic |
Effet direct Solutions de fortes concentrations Radiolyse pulsée picoseconde Pompe-sonde Radiolyse gamma Oxydation des ions halogénures Direct effect Highly concentrated solutions Picosecond pulse radiolysis Gamma radiolysis Oxidation of halide ions |
spellingShingle |
Effet direct Solutions de fortes concentrations Radiolyse pulsée picoseconde Pompe-sonde Radiolyse gamma Oxydation des ions halogénures Direct effect Highly concentrated solutions Picosecond pulse radiolysis Gamma radiolysis Oxidation of halide ions Balcerzyk, Anna Steady state and picosecond pulse radiolysis study of highly concentrated aqueous solutions |
description |
Le mécanisme de radiolyse de l’eau est bien établi. Sous l’effet des rayonnements ionisants, les produits de la radiolyse de l’eau pure sont les radicaux et les produits moléculaires tels que les électrons solvatés, les atomes hydrogènes, les radicaux hydroxyles, le peroxyde d’hydrogène et les ions hydroniums. Lorsque les solutions concentrées sont irradiées, le résultat de la radiolyse change à cause de la fraction d’énergie absorbée par le soluté, cette fraction est négligeable dans le cas des solutions diluées. Les produits de la radiolyse du solvant peuvent réagir avec les molécules du solvant engendrant des changements dans leurs rendements radiolytiques ainsi qu’un changement dans le mécanisme de radiolyse du solvant. L’effet du rayonnement ionisant sur les solutions concentrées est appelé l’effet direct du rayonnement ionisant. La compréhension de cet effet est fondamentale dans plusieurs domaines tels que l’énergie nucléaire, la radiothérapie et la radiobiologie.L’objectif de ce travail est de comprendre le mécanisme de radiolyse des solutions concentrées ainsi que de quantifier l’effet direct du rayonnement ionisant en étudiant des solutions concentrées d’halogénures tels que les bromures de sodium et les chlorures de sodium, de même qu’une étude préliminaire sur les solutions concentrées d’acide nitrique.Tout d’abord, en effectuant la radiolyse stationnaire des solutions concentrées de bromures de sodium, nous avons quantifié le rendement radiolytique de formation de Br3- qui est l’unique produit stable de ces solutions sous rayonnements sous différentes conditions expérimentales.Ensuite, en effectuant la radiolyse pulsée picoseconde sur l’installation ELYSE des solutions aqueuses de NaCl, NaBr et HNO3, nous avons montré l’ionisation direct du soluté après le passage du faisceau d’electron. Selon les cinétiques obtenues, nous avons montré que la formation Br2•-, Cl2•-, NO3• prend place durant l’impulsion picoseconde d’électron d’électron. La radiolyse pulsée picoseconde nous a permis donc de conclure qu’il existe deux voies pour la formation de Br2•- et Cl2•-. La première voie résulte de l’ionisation directe du soluté. La deuxième résulte du changement dans le mécanisme de radiolyse de l’eau dû à la forte concentration des ions halogénures autour des molécules d’eau ionisées. Nos résultats montrent que la formation du radical hydroxyle HO• dans les solutions concentrées est marginale puisque la molécules d’eau ionisée, le trou H2O+ , réagit très rapidement avec les ions halogénures. === The mechanism of water radiolysis is well established. As a result of the action of ionizing radiation on pure water, radicals and molecular products such as solvated electrons, hydrogen atoms, hydroxyl radicals, hydrogen peroxide and hydronium ions are formed. When highly concentrated solutions are irradiated, the outcome of irradiation is changed due to the important fraction of energy being absorbed by the solute which in the case of diluted solutions is skipped. Products of solvent radiolysis may react with the molecules of the solute leading to the change in their yields and moreover, may cause changes in the mechanism of solvent radiolysis. The action of ionizing radiation on highly concentrated solutions is named direct action of radiation. The understanding of direct effect of ionizing radiation is very important in several aspects, for example in nuclear energy, or radiotherapy or radiobiology. The aim of this work was to understand the mechanism and quantify the direct action of ionizing radiation in model systems such as highly concentrated sodium bromide and sodium chloride solutions. Firstly, by performing gamma radiolysis of highly concentrated solution of sodium bromide we quantify the yield of direct ionization of bromide ions for different experimental conditions.Secondly, by carrying out picosecond pulse radiolysis of aqueous solutions of NaCl, NaBr, and HNO3, we showed the direct ionization of the solute after the passage of electron beam. On the base of recorded kinetics, we showed that the formation of Br2•-, Cl2•-, NO3• takes place during the electron pulse. Picosecond pulse radiolysis allowed us to conclude that two ways of formation of Br2•- and Cl2•- exist. The first results from the direct ionization of the solute. The second results from the change in the mechanism of water radiolysis due to the high concentration of halide ions around the molecules of ionized water. Our results show that the formation of HO• radical in highly concentrated solutions is marginal and only stem from the dissociation of excited water, since the molecules of ionized water react with halide ions instead of hydronium ions leading to the formation of HO• hydroxyl radical. |
author2 |
Paris 11 |
author_facet |
Paris 11 Balcerzyk, Anna |
author |
Balcerzyk, Anna |
author_sort |
Balcerzyk, Anna |
title |
Steady state and picosecond pulse radiolysis study of highly concentrated aqueous solutions |
title_short |
Steady state and picosecond pulse radiolysis study of highly concentrated aqueous solutions |
title_full |
Steady state and picosecond pulse radiolysis study of highly concentrated aqueous solutions |
title_fullStr |
Steady state and picosecond pulse radiolysis study of highly concentrated aqueous solutions |
title_full_unstemmed |
Steady state and picosecond pulse radiolysis study of highly concentrated aqueous solutions |
title_sort |
steady state and picosecond pulse radiolysis study of highly concentrated aqueous solutions |
publishDate |
2011 |
url |
http://www.theses.fr/2011PA112306 |
work_keys_str_mv |
AT balcerzykanna steadystateandpicosecondpulseradiolysisstudyofhighlyconcentratedaqueoussolutions AT balcerzykanna etudesderadiolysepulseepicosecondeetstationnairedessolutionsaqueusesconcentrees |
_version_ |
1719191306078519296 |
spelling |
ndltd-theses.fr-2011PA1123062019-05-18T03:42:08Z Steady state and picosecond pulse radiolysis study of highly concentrated aqueous solutions Etudes de radiolyse pulsée picoseconde et stationnaire des solutions aqueuses concentrées Effet direct Solutions de fortes concentrations Radiolyse pulsée picoseconde Pompe-sonde Radiolyse gamma Oxydation des ions halogénures Direct effect Highly concentrated solutions Picosecond pulse radiolysis Gamma radiolysis Oxidation of halide ions Le mécanisme de radiolyse de l’eau est bien établi. Sous l’effet des rayonnements ionisants, les produits de la radiolyse de l’eau pure sont les radicaux et les produits moléculaires tels que les électrons solvatés, les atomes hydrogènes, les radicaux hydroxyles, le peroxyde d’hydrogène et les ions hydroniums. Lorsque les solutions concentrées sont irradiées, le résultat de la radiolyse change à cause de la fraction d’énergie absorbée par le soluté, cette fraction est négligeable dans le cas des solutions diluées. Les produits de la radiolyse du solvant peuvent réagir avec les molécules du solvant engendrant des changements dans leurs rendements radiolytiques ainsi qu’un changement dans le mécanisme de radiolyse du solvant. L’effet du rayonnement ionisant sur les solutions concentrées est appelé l’effet direct du rayonnement ionisant. La compréhension de cet effet est fondamentale dans plusieurs domaines tels que l’énergie nucléaire, la radiothérapie et la radiobiologie.L’objectif de ce travail est de comprendre le mécanisme de radiolyse des solutions concentrées ainsi que de quantifier l’effet direct du rayonnement ionisant en étudiant des solutions concentrées d’halogénures tels que les bromures de sodium et les chlorures de sodium, de même qu’une étude préliminaire sur les solutions concentrées d’acide nitrique.Tout d’abord, en effectuant la radiolyse stationnaire des solutions concentrées de bromures de sodium, nous avons quantifié le rendement radiolytique de formation de Br3- qui est l’unique produit stable de ces solutions sous rayonnements sous différentes conditions expérimentales.Ensuite, en effectuant la radiolyse pulsée picoseconde sur l’installation ELYSE des solutions aqueuses de NaCl, NaBr et HNO3, nous avons montré l’ionisation direct du soluté après le passage du faisceau d’electron. Selon les cinétiques obtenues, nous avons montré que la formation Br2•-, Cl2•-, NO3• prend place durant l’impulsion picoseconde d’électron d’électron. La radiolyse pulsée picoseconde nous a permis donc de conclure qu’il existe deux voies pour la formation de Br2•- et Cl2•-. La première voie résulte de l’ionisation directe du soluté. La deuxième résulte du changement dans le mécanisme de radiolyse de l’eau dû à la forte concentration des ions halogénures autour des molécules d’eau ionisées. Nos résultats montrent que la formation du radical hydroxyle HO• dans les solutions concentrées est marginale puisque la molécules d’eau ionisée, le trou H2O+ , réagit très rapidement avec les ions halogénures. The mechanism of water radiolysis is well established. As a result of the action of ionizing radiation on pure water, radicals and molecular products such as solvated electrons, hydrogen atoms, hydroxyl radicals, hydrogen peroxide and hydronium ions are formed. When highly concentrated solutions are irradiated, the outcome of irradiation is changed due to the important fraction of energy being absorbed by the solute which in the case of diluted solutions is skipped. Products of solvent radiolysis may react with the molecules of the solute leading to the change in their yields and moreover, may cause changes in the mechanism of solvent radiolysis. The action of ionizing radiation on highly concentrated solutions is named direct action of radiation. The understanding of direct effect of ionizing radiation is very important in several aspects, for example in nuclear energy, or radiotherapy or radiobiology. The aim of this work was to understand the mechanism and quantify the direct action of ionizing radiation in model systems such as highly concentrated sodium bromide and sodium chloride solutions. Firstly, by performing gamma radiolysis of highly concentrated solution of sodium bromide we quantify the yield of direct ionization of bromide ions for different experimental conditions.Secondly, by carrying out picosecond pulse radiolysis of aqueous solutions of NaCl, NaBr, and HNO3, we showed the direct ionization of the solute after the passage of electron beam. On the base of recorded kinetics, we showed that the formation of Br2•-, Cl2•-, NO3• takes place during the electron pulse. Picosecond pulse radiolysis allowed us to conclude that two ways of formation of Br2•- and Cl2•- exist. The first results from the direct ionization of the solute. The second results from the change in the mechanism of water radiolysis due to the high concentration of halide ions around the molecules of ionized water. Our results show that the formation of HO• radical in highly concentrated solutions is marginal and only stem from the dissociation of excited water, since the molecules of ionized water react with halide ions instead of hydronium ions leading to the formation of HO• hydroxyl radical. Electronic Thesis or Dissertation Text Image en http://www.theses.fr/2011PA112306 Balcerzyk, Anna 2011-12-09 Paris 11 Mostafavi, Mehran |