Chaînes alternées dans les graphes arête-coloriés : k-linkage et arbres couvrants

Un graphe arête-colorié Gc est un graphe dont les arêtes sont coloriées par un ensemble de couleurs données. Un sous-graphe de Gc est dit proprement colorié s'il ne contient pas d'arêtes adjacentes de même couleur. Un graphe ou multigraphe c-arête-colorié Gc, est dit k-lié (respectiv...

Full description

Bibliographic Details
Main Author: Mendy, Gervais
Other Authors: Paris 11
Language:fr
Published: 2011
Subjects:
Online Access:http://www.theses.fr/2011PA112194/document
id ndltd-theses.fr-2011PA112194
record_format oai_dc
collection NDLTD
language fr
sources NDLTD
topic C-arête-colorié
K-lié
K-arête-colorié
Arbre couvrant propre
Arbre couvrant faiblement colorié
Chaîne hamiltonienne propre
C-edge-colored
K-linked
K-edge-linked
Proper spanning tree
Weak spanning tree
Proper hamiltonian path
spellingShingle C-arête-colorié
K-lié
K-arête-colorié
Arbre couvrant propre
Arbre couvrant faiblement colorié
Chaîne hamiltonienne propre
C-edge-colored
K-linked
K-edge-linked
Proper spanning tree
Weak spanning tree
Proper hamiltonian path
Mendy, Gervais
Chaînes alternées dans les graphes arête-coloriés : k-linkage et arbres couvrants
description Un graphe arête-colorié Gc est un graphe dont les arêtes sont coloriées par un ensemble de couleurs données. Un sous-graphe de Gc est dit proprement colorié s'il ne contient pas d'arêtes adjacentes de même couleur. Un graphe ou multigraphe c-arête-colorié Gc, est dit k-lié (respectivement k-arête-lié) si et seulement si quelque soient 2k sommets distincts de V(Gc), notés, x1 y1 , x2 y2 , ..., xk yk , il existe k chaînes élémentaires sommet-disjointes (respectivement arête-disjointes) proprement arête-coloriées, reliant x1 à y1 , x2 à y2 , ... , xk à yk .Un arbre couvrant propre d'un graphe Gc est un sous-graphe de Gc qui est un arbre couvrant proprement colorié.Un arbre couvrant faiblement colorié est une arborescence telle qu'il existe une chaîne proprement coloriée entre la racine et chaque sommet du graphe.Dans la première partie de cette thèse, nous donnons des conditions suffisantes pour qu'un graphe arête-colorié soit k-lié. C'est un problème classique en théorie des graphes, avec des applications multiples. Ainsi, nous avons établi entre autres les résultats suivants.A) Tout multigraphe 2-arête-colorié d'ordre n ≥ 242k tel que dc(Gc) ≥ n/2+k –1, est k-lié. B) Tout multigraphe c-arête-colorié d'ordre n ≥ 2k et de taille m≥ cn(n–1)/2 – c(n–2k +1)+1 est k-lié.C) Tout multigraphe c-arête-colorié d'ordre n ≥ 2k tel que dc(x) ≥ n/2 pour tout sommet x, est k-arête-lié.D) Tout multigraphe 2-arête-colorié d'ordre n ≥ 2k ≥ 10 et de taille m ≥ n2 –5n + 11 tel que dc(x) ≥ 1 pour tout sommet x, est k-arête-lié.Dans la seconde partie de cette thèse, deux autres problèmes classiques en théorie des graphes sont traités dans la version arête-coloriée. Il s'agit des arbres couvrants et des chaînes hamiltoniennes. Nous donnons ci-dessous quelques résultats.E) Tout graphe simple c-arête-colorié k-connexe d'ordre n ≥ C²k+1 + k + 2 avec c ≥ C²n–k–1 + k +1, a un arbre couvrant propre.F) Tout graphe Gc connexe c-arête-colorié de degré rainbow rd(Gc)=k et d'ordre n ≥ C²k+1 + k + 2 avec c ≥ C²n–k–1 + k +1, possède un arbre couvrant propre.G) Tout graphe simple c-arête-colorié k-connexe d'ordre n ≥ ((k + j)2 + 3(k + j) – 2)/2 avec c ≥ ((n – k – j)(n – k – j – 1))/2 + 2 , où j(j –1)=k , possède un arbre couvrant faiblement colorié.H) Tout multigraphe Gc d'ordre n ≥ 14 et de taille m ≥ (n – 3)(n – 4) + 3n – 2 tel que rd(Gc) = 2, possède une chaîne hamiltonienne propre. I) Tout multigraphe c-arête-colorié d'ordre n ≠ 5, 7 et de taille m ≥ n2 – 3n + 4, possède une chaîne hamiltonienne propre.La plupart des résultats exposés, sont les meilleurs possibles relativement aux propriétés sur les conditions suffisantes. === A c-edge-colored graph Gc is a graph whose edges are colored by a given set of colors. A subgraph of Gc is proper if no two adjacent edges have the same color.A c-edge-colored graph or multigraph Gc is k-linked (respectively k-edge-linked) if for any 2k distinct vertices, say x1 y1 , x2 y2 , ..., xk yk , there exist k vertex-disjoint (respectively edge-disjoint) proper paths joining x1 to y1 , x2 to y2 , ... , xk to yk .A proper spanning tree of a graph Gc is a spanning tree such that any two adjacent edges differ in colors.A weak spanning tree is a spanning rooted tree such that there exists a proper path between the root and every vertex of the graph.In the first part of this thesis, we provide conditions which are sufficient for an edge-colored graph to be k-linked. It is a classic problem in graph theory , with many applications. So, we established among others the following results.A) Every 2-edge-colored multigraph of order n ≥ 242k such that dc(Gc) ≥ n/2+k –1, is k-linked.B) Every c-edge-colored multigraph of order n ≥ 2k and size m≥ cn(n–1)/2 – c(n–2k +1)+1 is k-linked.C) Every c-edge-colored multigraph of order n ≥ 2k is k-edge-linked if for each vertex x, dc(x) ≥ n/2.D) Every 2-edge-colored multigraph of order n ≥ 2k ≥ 10 and size m ≥ n2 – 5n + 11 is k-edge-linked if for each vertex x, dc(x) ≥ 1.In the second part of this thesis, two other classic problems in graph theory are treated in edge-colored version: spanning trees and hamiltonian paths. We give below some results.E) Every c-edge-colored simple k-connected graph of order n ≥ C²k+1 + k + 2 with c ≥ C²n–k–1 + k +1, has a proper spanning tree.F) Every c-edge-colored connected graph Gc of rainbow degree rd(Gc)=k and order n ≥ C²k+1 + k + 2 with c ≥ C²n–k–1 + k +1, has a proper spanning tree. G) Every c-edge-colored simple k-connected graph of order n ≥ ((k + j)2 + 3(k + j) – 2)/2 and c ≥ ((n – k – j)(n – k – j – 1))/2 + 2 , with j(j –1)=k , has a weak spanning tree.H) Every c-edge-colored multigraph Gc of order n ≥ 14 and size m ≥ (n – 3)(n – 4) + 3n – 2 such that rd(Gc) = 2, has a proper hamiltonian path.I) Every c-edge-colored multigraph of order n ≠ 5, 7 and size m ≥ n2 – 3n + 4, has a proper hamiltonian path.Most of the given results are the best possible with regard to the properties on the sufficient conditions.
author2 Paris 11
author_facet Paris 11
Mendy, Gervais
author Mendy, Gervais
author_sort Mendy, Gervais
title Chaînes alternées dans les graphes arête-coloriés : k-linkage et arbres couvrants
title_short Chaînes alternées dans les graphes arête-coloriés : k-linkage et arbres couvrants
title_full Chaînes alternées dans les graphes arête-coloriés : k-linkage et arbres couvrants
title_fullStr Chaînes alternées dans les graphes arête-coloriés : k-linkage et arbres couvrants
title_full_unstemmed Chaînes alternées dans les graphes arête-coloriés : k-linkage et arbres couvrants
title_sort chaînes alternées dans les graphes arête-coloriés : k-linkage et arbres couvrants
publishDate 2011
url http://www.theses.fr/2011PA112194/document
work_keys_str_mv AT mendygervais chainesalterneesdanslesgraphesaretecoloriesklinkageetarbrescouvrants
AT mendygervais properpathsinedgecoloredgraphsklinkageandspanningtrees
_version_ 1718460028122300416
spelling ndltd-theses.fr-2011PA1121942017-06-16T04:21:02Z Chaînes alternées dans les graphes arête-coloriés : k-linkage et arbres couvrants Proper paths in edge-colored graphs : k-linkage and spanning trees C-arête-colorié K-lié K-arête-colorié Arbre couvrant propre Arbre couvrant faiblement colorié Chaîne hamiltonienne propre C-edge-colored K-linked K-edge-linked Proper spanning tree Weak spanning tree Proper hamiltonian path Un graphe arête-colorié Gc est un graphe dont les arêtes sont coloriées par un ensemble de couleurs données. Un sous-graphe de Gc est dit proprement colorié s'il ne contient pas d'arêtes adjacentes de même couleur. Un graphe ou multigraphe c-arête-colorié Gc, est dit k-lié (respectivement k-arête-lié) si et seulement si quelque soient 2k sommets distincts de V(Gc), notés, x1 y1 , x2 y2 , ..., xk yk , il existe k chaînes élémentaires sommet-disjointes (respectivement arête-disjointes) proprement arête-coloriées, reliant x1 à y1 , x2 à y2 , ... , xk à yk .Un arbre couvrant propre d'un graphe Gc est un sous-graphe de Gc qui est un arbre couvrant proprement colorié.Un arbre couvrant faiblement colorié est une arborescence telle qu'il existe une chaîne proprement coloriée entre la racine et chaque sommet du graphe.Dans la première partie de cette thèse, nous donnons des conditions suffisantes pour qu'un graphe arête-colorié soit k-lié. C'est un problème classique en théorie des graphes, avec des applications multiples. Ainsi, nous avons établi entre autres les résultats suivants.A) Tout multigraphe 2-arête-colorié d'ordre n ≥ 242k tel que dc(Gc) ≥ n/2+k –1, est k-lié. B) Tout multigraphe c-arête-colorié d'ordre n ≥ 2k et de taille m≥ cn(n–1)/2 – c(n–2k +1)+1 est k-lié.C) Tout multigraphe c-arête-colorié d'ordre n ≥ 2k tel que dc(x) ≥ n/2 pour tout sommet x, est k-arête-lié.D) Tout multigraphe 2-arête-colorié d'ordre n ≥ 2k ≥ 10 et de taille m ≥ n2 –5n + 11 tel que dc(x) ≥ 1 pour tout sommet x, est k-arête-lié.Dans la seconde partie de cette thèse, deux autres problèmes classiques en théorie des graphes sont traités dans la version arête-coloriée. Il s'agit des arbres couvrants et des chaînes hamiltoniennes. Nous donnons ci-dessous quelques résultats.E) Tout graphe simple c-arête-colorié k-connexe d'ordre n ≥ C²k+1 + k + 2 avec c ≥ C²n–k–1 + k +1, a un arbre couvrant propre.F) Tout graphe Gc connexe c-arête-colorié de degré rainbow rd(Gc)=k et d'ordre n ≥ C²k+1 + k + 2 avec c ≥ C²n–k–1 + k +1, possède un arbre couvrant propre.G) Tout graphe simple c-arête-colorié k-connexe d'ordre n ≥ ((k + j)2 + 3(k + j) – 2)/2 avec c ≥ ((n – k – j)(n – k – j – 1))/2 + 2 , où j(j –1)=k , possède un arbre couvrant faiblement colorié.H) Tout multigraphe Gc d'ordre n ≥ 14 et de taille m ≥ (n – 3)(n – 4) + 3n – 2 tel que rd(Gc) = 2, possède une chaîne hamiltonienne propre. I) Tout multigraphe c-arête-colorié d'ordre n ≠ 5, 7 et de taille m ≥ n2 – 3n + 4, possède une chaîne hamiltonienne propre.La plupart des résultats exposés, sont les meilleurs possibles relativement aux propriétés sur les conditions suffisantes. A c-edge-colored graph Gc is a graph whose edges are colored by a given set of colors. A subgraph of Gc is proper if no two adjacent edges have the same color.A c-edge-colored graph or multigraph Gc is k-linked (respectively k-edge-linked) if for any 2k distinct vertices, say x1 y1 , x2 y2 , ..., xk yk , there exist k vertex-disjoint (respectively edge-disjoint) proper paths joining x1 to y1 , x2 to y2 , ... , xk to yk .A proper spanning tree of a graph Gc is a spanning tree such that any two adjacent edges differ in colors.A weak spanning tree is a spanning rooted tree such that there exists a proper path between the root and every vertex of the graph.In the first part of this thesis, we provide conditions which are sufficient for an edge-colored graph to be k-linked. It is a classic problem in graph theory , with many applications. So, we established among others the following results.A) Every 2-edge-colored multigraph of order n ≥ 242k such that dc(Gc) ≥ n/2+k –1, is k-linked.B) Every c-edge-colored multigraph of order n ≥ 2k and size m≥ cn(n–1)/2 – c(n–2k +1)+1 is k-linked.C) Every c-edge-colored multigraph of order n ≥ 2k is k-edge-linked if for each vertex x, dc(x) ≥ n/2.D) Every 2-edge-colored multigraph of order n ≥ 2k ≥ 10 and size m ≥ n2 – 5n + 11 is k-edge-linked if for each vertex x, dc(x) ≥ 1.In the second part of this thesis, two other classic problems in graph theory are treated in edge-colored version: spanning trees and hamiltonian paths. We give below some results.E) Every c-edge-colored simple k-connected graph of order n ≥ C²k+1 + k + 2 with c ≥ C²n–k–1 + k +1, has a proper spanning tree.F) Every c-edge-colored connected graph Gc of rainbow degree rd(Gc)=k and order n ≥ C²k+1 + k + 2 with c ≥ C²n–k–1 + k +1, has a proper spanning tree. G) Every c-edge-colored simple k-connected graph of order n ≥ ((k + j)2 + 3(k + j) – 2)/2 and c ≥ ((n – k – j)(n – k – j – 1))/2 + 2 , with j(j –1)=k , has a weak spanning tree.H) Every c-edge-colored multigraph Gc of order n ≥ 14 and size m ≥ (n – 3)(n – 4) + 3n – 2 such that rd(Gc) = 2, has a proper hamiltonian path.I) Every c-edge-colored multigraph of order n ≠ 5, 7 and size m ≥ n2 – 3n + 4, has a proper hamiltonian path.Most of the given results are the best possible with regard to the properties on the sufficient conditions. Electronic Thesis or Dissertation Text Image fr http://www.theses.fr/2011PA112194/document Mendy, Gervais 2011-09-28 Paris 11 Université Cheikh Anta Diop de Dakar Manoussakis, Yannis Seck, Diaraf