Summary: | Ce manuscrit est dédié à l’analyse de performances en traitement d’antenne pour l’estimation des paramètres d’intérêt à l’aide d’un réseau de capteurs. Il est divisé en deux parties :– Tout d’abord, nous présentons l’étude de certaines bornes inférieures de l’erreur quadratique moyenne liées à la localisation de sources dans le contexte champ proche. Nous utilisons la borne de Cramér-Rao pour l’étude de la zone asymptotique (notamment en terme de rapport signal à bruit avec un nombre fini d’observations). Puis, nous étudions d’autres bornes inférieures de l’erreur quadratique moyenne qui permettent de prévoir le phénomène de décrochement de l’erreur quadratique moyenne des estimateurs (on cite, par exemple, la borne de McAulay-Seidman, la borne de Hammersley-Chapman-Robbins et la borne de Fourier Cramér-Rao).– Deuxièmement, nous nous concentrons sur le concept du seuil statistique de résolution limite, c’est-à-dire, la distance minimale entre deux signaux noyés dans un bruit additif qui permet une ”correcte” estimation des paramètres. Nous présentons quelques applications bien connues en traitement d’antenne avant d’étendre les concepts existants au cas de signaux multidimensionnels. Par la suite, nous étudions la validité de notre extension en utilisant un test d’hypothèses binaire. Enfin, nous appliquons notre extension à certains modèles d’observation multidimensionnels === This manuscript concerns the performance analysis in array signal processing. It can bedivided into two parts :- First, we present the study of some lower bounds on the mean square error related to the source localization in the near eld context. Using the Cramér-Rao bound, we investigate the mean square error of the maximum likelihood estimator w.r.t. the direction of arrivals in the so-called asymptotic area (i.e., for a high signal to noise ratio with a nite number of observations.) Then, using other bounds than the Cramér-Rao bound, we predict the threshold phenomena.- Secondly, we focus on the concept of the statistical resolution limit (i.e., the minimum distance between two closely spaced signals embedded in an additive noise that allows a correct resolvability/parameter estimation.) We de ne and derive the statistical resolution limit using the Cramér-Rao bound and the hypothesis test approaches for the mono-dimensional case. Then, we extend this concept to the multidimensional case. Finally, a generalized likelihood ratio test based framework for the multidimensional statistical resolution limit is given to assess the validity of the proposed extension.
|