Adaptation de l'Archaea halophile halobacterium salinarum aux stress environnementaux : mécanismes de survie et rôle de la protéolyse intracellulaire
Les systèmes moléculaires décrits chez les Archaea mettent en évidence un caractère primitif et une simplicité, comparativement à leurs homologues eucaryotes. Par ailleurs, leur caractère extrêmophile a pour conséquence une hyper-robustesse qui rend leur manipulation in vitro et les études structura...
Main Author: | |
---|---|
Other Authors: | |
Language: | fr |
Published: |
2011
|
Subjects: | |
Online Access: | http://www.theses.fr/2011GRENV087/document |
id |
ndltd-theses.fr-2011GRENV087 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
fr |
sources |
NDLTD |
topic |
Archaea Extrêmophile Protéolyse Protéase Résistance au stress Stress environnementaux Dynamique moléculaire Neutron Morphologie TET Archaea Extremophil Proteolysis Protease Stress resistance Environmental stress Molecular dynamics Neutron Morphology TET |
spellingShingle |
Archaea Extrêmophile Protéolyse Protéase Résistance au stress Stress environnementaux Dynamique moléculaire Neutron Morphologie TET Archaea Extremophil Proteolysis Protease Stress resistance Environmental stress Molecular dynamics Neutron Morphology TET Marty, Vincent Adaptation de l'Archaea halophile halobacterium salinarum aux stress environnementaux : mécanismes de survie et rôle de la protéolyse intracellulaire |
description |
Les systèmes moléculaires décrits chez les Archaea mettent en évidence un caractère primitif et une simplicité, comparativement à leurs homologues eucaryotes. Par ailleurs, leur caractère extrêmophile a pour conséquence une hyper-robustesse qui rend leur manipulation in vitro et les études structurales beaucoup plus aisées. Ainsi les Archaea représentent de bons modèles pour comprendre les fonctions cellulaires complexes, particulièrement celles qui mettent en jeu de grandes machineries moléculaires, comme celles impliquées dans la protéolyse. Mon travail de thèse a consisté à comprendre les mécanismes de résistance et l'importance des systèmes de protéolyse dans l'adaptation des Archaea halophiles aux stress environnementaux. Les Archaea halophiles accumulent des concentrations multi-molaires de KCl/NaCl dans leur cytosol (3.4M KCl / 1.1M NaCl chez Halobacterium salinarum). Ainsi, les protéines de ces organismes sont elles-mêmes halophiles et ne sont solubles et repliées que dans des conditions de salinité extrêmes (de 2 à 5M).Nous avons étudié la réponse de l'Archaea halophile stricte H. salinarum à des stress, dont les stress à basse salinité, en se focalisant en particulier sur les modifications de la dynamique moléculaire du protéome in vivo (diffusion neutronique). Au cours de ce travail, il a été mis en évidence un phénomène de survie à la basse salinité associé à des modifications morphologiques.Un autre objectif de ma thèse a été de contribuer à la compréhension du rôle dans la protéolyse intracellulaire du complexe aminopeptidasique TET, dans les conditions de stress mises en place dans les études précédentes. === Molecular systems described for Archaea show primitive and simple characteristics, compared to their homologous eukaryotes. In addition, extremophilic characteristic results in an hyper-robust which makes in vitro manipulation and structural studies much easier. Thus, Archaea represent good models for understanding complex cellular functions, particularly those that involve large molecular machines, such as those involved in proteolysis. My thesis consisted in understanding the resistance mechanisms and the importance of proteolytic systems in the adaptation of halophilic Archaea to environmental stresses. Halophilic Archaea accumulate multi-molar concentrations of KCl / NaCl in their cytosol (3.4M KCl / NaCl 1.1M for Halobacterium Salinarum). This requires a very special biochemistry that allows operation in solvents where free water is scarce. Thus, the proteins of these organisms are themselves halophilic and are soluble and folded only in extreme salinity conditions (2 to 5 M). This particular biochemistry partly explain the extraordinary ability of halophilic Archaea to resist physical and chemical stress (temperature, radiation, dehydration). We study the response of the halophilic Archaea strict H. salinarum at low-salinity stress. Indeed, beyond the osmotic shock, the fall of the environment salt concentration causes a decrease in the intracellular KCl concentration, which should have a direct effect on the folding state of intracellular protein, as in case of heat stress. In the first part of this thesis, a study was conduct to determine viability limits and cytosolic modifications, associated with a salinity decrease. These studies involve intracellular salt dosages, viability studies (microscopic counts, color live / dead), induction of chaperone proteins linked to stress response and biophysical neutron experiments, to evaluate the effect of stress on proteins folding. In this work, a phenomenon of survival at low salinity linked to morphological changes was revealed. To describe this phenomenon, this second study involves confocal microscopy experiences, fluorescence microscopy, viability tests, counting on box, scanning electron microscopy, electron microscopy by negative staining, salt intracellular dosages and proteins separation experiments, to study the overall proteome composition during low salinity stress. In this study, a fall of the intracellular K $^+$ concentration and the proteome clarification during stress was revealed. Low salt concentrations causes halophiles proteins denaturation, the accumulation of misfolded proteins in the cytoplasm involves chaperones systems and intracellular proteolysis machinery. In this context, another objective of my thesis was to contribute to the understanding of the intracellular proteolysis role in the PAN-proteasome system and in the aminopeptidase TET complex, in stress conditions established in previous studies. This part of the thesis involves experiments of endopeptidase activity assay, aminopeptidase activity assay, quantification of mRNA genic expression by Northern blot, immunoprecipitation, proteins separation by sucrose gradient and proteasome chemical inhibition (drug). We show the role of the PAN-proteasome system in stress response and we deepen our understanding of the aminopeptidase TET role in vivo. This protease appears to have an independent role of the proteasome complex. The protease TET seems to participate at the amino acids treatment in cells to maintain the metabolic activities in nutritional deficiencies. |
author2 |
Grenoble |
author_facet |
Grenoble Marty, Vincent |
author |
Marty, Vincent |
author_sort |
Marty, Vincent |
title |
Adaptation de l'Archaea halophile halobacterium salinarum aux stress environnementaux : mécanismes de survie et rôle de la protéolyse intracellulaire |
title_short |
Adaptation de l'Archaea halophile halobacterium salinarum aux stress environnementaux : mécanismes de survie et rôle de la protéolyse intracellulaire |
title_full |
Adaptation de l'Archaea halophile halobacterium salinarum aux stress environnementaux : mécanismes de survie et rôle de la protéolyse intracellulaire |
title_fullStr |
Adaptation de l'Archaea halophile halobacterium salinarum aux stress environnementaux : mécanismes de survie et rôle de la protéolyse intracellulaire |
title_full_unstemmed |
Adaptation de l'Archaea halophile halobacterium salinarum aux stress environnementaux : mécanismes de survie et rôle de la protéolyse intracellulaire |
title_sort |
adaptation de l'archaea halophile halobacterium salinarum aux stress environnementaux : mécanismes de survie et rôle de la protéolyse intracellulaire |
publishDate |
2011 |
url |
http://www.theses.fr/2011GRENV087/document |
work_keys_str_mv |
AT martyvincent adaptationdelarchaeahalophilehalobacteriumsalinarumauxstressenvironnementauxmecanismesdesurvieetroledelaproteolyseintracellulaire AT martyvincent environnementalstressadaptationofthehalophilicarchaeahalobateriumsalinarumsurvivalmechanismsandroleofintracellularproteolysis |
_version_ |
1718702330935771136 |
spelling |
ndltd-theses.fr-2011GRENV0872018-06-22T04:55:57Z Adaptation de l'Archaea halophile halobacterium salinarum aux stress environnementaux : mécanismes de survie et rôle de la protéolyse intracellulaire Environnemental stress adaptation of the halophilic Archaea halobaterium salinarum : survival mechanisms and role of intracellular proteolysis. Archaea Extrêmophile Protéolyse Protéase Résistance au stress Stress environnementaux Dynamique moléculaire Neutron Morphologie TET Archaea Extremophil Proteolysis Protease Stress resistance Environmental stress Molecular dynamics Neutron Morphology TET Les systèmes moléculaires décrits chez les Archaea mettent en évidence un caractère primitif et une simplicité, comparativement à leurs homologues eucaryotes. Par ailleurs, leur caractère extrêmophile a pour conséquence une hyper-robustesse qui rend leur manipulation in vitro et les études structurales beaucoup plus aisées. Ainsi les Archaea représentent de bons modèles pour comprendre les fonctions cellulaires complexes, particulièrement celles qui mettent en jeu de grandes machineries moléculaires, comme celles impliquées dans la protéolyse. Mon travail de thèse a consisté à comprendre les mécanismes de résistance et l'importance des systèmes de protéolyse dans l'adaptation des Archaea halophiles aux stress environnementaux. Les Archaea halophiles accumulent des concentrations multi-molaires de KCl/NaCl dans leur cytosol (3.4M KCl / 1.1M NaCl chez Halobacterium salinarum). Ainsi, les protéines de ces organismes sont elles-mêmes halophiles et ne sont solubles et repliées que dans des conditions de salinité extrêmes (de 2 à 5M).Nous avons étudié la réponse de l'Archaea halophile stricte H. salinarum à des stress, dont les stress à basse salinité, en se focalisant en particulier sur les modifications de la dynamique moléculaire du protéome in vivo (diffusion neutronique). Au cours de ce travail, il a été mis en évidence un phénomène de survie à la basse salinité associé à des modifications morphologiques.Un autre objectif de ma thèse a été de contribuer à la compréhension du rôle dans la protéolyse intracellulaire du complexe aminopeptidasique TET, dans les conditions de stress mises en place dans les études précédentes. Molecular systems described for Archaea show primitive and simple characteristics, compared to their homologous eukaryotes. In addition, extremophilic characteristic results in an hyper-robust which makes in vitro manipulation and structural studies much easier. Thus, Archaea represent good models for understanding complex cellular functions, particularly those that involve large molecular machines, such as those involved in proteolysis. My thesis consisted in understanding the resistance mechanisms and the importance of proteolytic systems in the adaptation of halophilic Archaea to environmental stresses. Halophilic Archaea accumulate multi-molar concentrations of KCl / NaCl in their cytosol (3.4M KCl / NaCl 1.1M for Halobacterium Salinarum). This requires a very special biochemistry that allows operation in solvents where free water is scarce. Thus, the proteins of these organisms are themselves halophilic and are soluble and folded only in extreme salinity conditions (2 to 5 M). This particular biochemistry partly explain the extraordinary ability of halophilic Archaea to resist physical and chemical stress (temperature, radiation, dehydration). We study the response of the halophilic Archaea strict H. salinarum at low-salinity stress. Indeed, beyond the osmotic shock, the fall of the environment salt concentration causes a decrease in the intracellular KCl concentration, which should have a direct effect on the folding state of intracellular protein, as in case of heat stress. In the first part of this thesis, a study was conduct to determine viability limits and cytosolic modifications, associated with a salinity decrease. These studies involve intracellular salt dosages, viability studies (microscopic counts, color live / dead), induction of chaperone proteins linked to stress response and biophysical neutron experiments, to evaluate the effect of stress on proteins folding. In this work, a phenomenon of survival at low salinity linked to morphological changes was revealed. To describe this phenomenon, this second study involves confocal microscopy experiences, fluorescence microscopy, viability tests, counting on box, scanning electron microscopy, electron microscopy by negative staining, salt intracellular dosages and proteins separation experiments, to study the overall proteome composition during low salinity stress. In this study, a fall of the intracellular K $^+$ concentration and the proteome clarification during stress was revealed. Low salt concentrations causes halophiles proteins denaturation, the accumulation of misfolded proteins in the cytoplasm involves chaperones systems and intracellular proteolysis machinery. In this context, another objective of my thesis was to contribute to the understanding of the intracellular proteolysis role in the PAN-proteasome system and in the aminopeptidase TET complex, in stress conditions established in previous studies. This part of the thesis involves experiments of endopeptidase activity assay, aminopeptidase activity assay, quantification of mRNA genic expression by Northern blot, immunoprecipitation, proteins separation by sucrose gradient and proteasome chemical inhibition (drug). We show the role of the PAN-proteasome system in stress response and we deepen our understanding of the aminopeptidase TET role in vivo. This protease appears to have an independent role of the proteasome complex. The protease TET seems to participate at the amino acids treatment in cells to maintain the metabolic activities in nutritional deficiencies. Electronic Thesis or Dissertation Text fr http://www.theses.fr/2011GRENV087/document Marty, Vincent 2011-12-09 Grenoble Franzetti, Bruno |