High temperature phase transitions in nuclear fuels of the fourth generation.

Il est important de bien connaitre le comportement des combustibles nucléaires dans des conditions extrêmes afin d’assurer la sureté des réacteurs et de prévoir les conséquences d’un éventuel accident. L’objectif principal de cette thèse est l’étude des transitions de phase à très haute température...

Full description

Bibliographic Details
Main Author: Bruycker, Franck De
Other Authors: Orléans
Language:en
Published: 2010
Subjects:
Online Access:http://www.theses.fr/2010ORLE2060/document
Description
Summary:Il est important de bien connaitre le comportement des combustibles nucléaires dans des conditions extrêmes afin d’assurer la sureté des réacteurs et de prévoir les conséquences d’un éventuel accident. L’objectif principal de cette thèse est l’étude des transitions de phase à très haute température de matériaux envisagés pour les combustibles nucléaires de quatrième génération. Dans ce but, une méthode a été développée à l’institut européen des transuraniens (ITU) pour étudier ces matériaux à des températures excédant 2500K. La technique utilisée consiste à chauffer l’échantillon à l’aide d’un laser de haute puissance et à mesurer sa température par pyrométrie. Le signal d’un second laser réfléchi par la surface de l’échantillon est aussi étudié afin de mieux caractériser les transitions de phase. Les avantages de cette technique résident dans la rapidité des expériences (de quelques dizaines de ms à quelques secondes), et dans le contrôle de l’atmosphère, ce qui permet de limiter les effets d’évaporation ou d’oxydation/réduction de l’échantillon. Il convient de signaler que seule la partie centrale de l’échantillon est fondue, la phase liquide sondée est ainsi confinée au sein de l’échantillon lui-même, ce qui évite toute interaction avec le système de fixation. Nos résultats sur les carbures d’uranium sont en accord avec ceux de la littérature, et ont permis d’affiner le calcul des diagrammes de phase pour ces matériaux stables à haute température. La technique que nous avons mise au point a été utilisée, pour la première fois, pour étudier des matériaux de haute activité. Des résultats originaux ont été obtenus sur les systèmes PuO2, NpO2, UO2-PuO2 et Pu-C. === Understanding the behaviour of nuclear materials in extreme conditions is of prime importance for the analysis of the operation limits of nuclear fuels, and prediction of possible nuclear reactor accidents, relevant to the general objectives of nuclear safety research. The main purpose of this thesis is the study of high temperature phase transitions in nuclear materials, with special attention to the candidate fuel materials for the reactors of the 4th Generation. In this framework, material properties need to be investigated at temperatures higher than 2500K, where equilibrium conditions are difficult to obtain. Laser heating combined with fast pyrometer is the method used at the European Institute for Transuranium Elements (JRC – ITU). It is associated to a novel process used to determine phase transitions, based on the detection, via a suited low-power (mW) probe laser, of changes in surface reflectivity that may accompany solid/liquid phase transitions. Fast thermal cycles, from a few ms up to the second, under almost container-free conditions and control atmosphere narrow the problem of vaporisation and sample interactions usually meet with traditional method. This new experimental approach has led to very interesting results. It confirmed earlier research for material systems known to be stable at high temperature (such as U-C) and allowed a refinement of the corresponding phase diagrams. But it was also feasible to apply this method to materials highly reactive, thus original results are presented on PuO2, NpO2, UO2-PuO2 and Pu-C systems.