Dépendance et événements extrêmes en théorie de la ruine : étude univariée et multivariée, problèmes d'allocation optimale
Cette thèse présente de nouveaux modèles et de nouveaux résultats en théorie de la ruine, lorsque les distributions des montants de sinistres sont à queue épaisse. Les hypothèses classiques d’indépendance et de stationnarité, ainsi que l’analyse univariée sont parfois jugées trop restrictives pour d...
Main Author: | |
---|---|
Other Authors: | |
Language: | en fr |
Published: |
2010
|
Subjects: | |
Online Access: | http://www.theses.fr/2010LYO10182/document |
Summary: | Cette thèse présente de nouveaux modèles et de nouveaux résultats en théorie de la ruine, lorsque les distributions des montants de sinistres sont à queue épaisse. Les hypothèses classiques d’indépendance et de stationnarité, ainsi que l’analyse univariée sont parfois jugées trop restrictives pour décrire l’évolution complexe des réserves d’une compagnie d’assurance. Dans un contexte de dépendance entre les montants de sinistres, des équivalents de la probabilité deruine univariée en temps fini sont obtenus. Cette dépendance, ainsi que les autres paramètres du modèle sont modulés par un processus Markovien d’environnement pour prendre en compte des possibles crises de corrélation. Nous introduisons ensuite des modèles de dépendance entre les montants de sinistres et les temps inter-sinistres pour des risques de type tremblements de terre et inondations. Dans un cadre multivarié, nous présentons divers critères de risques tels que la probabilité de ruine multivariée ou l’espérance de l’intégrale temporelle de la partie négative du processus de risque. Nous résolvons des problèmes d’allocation optimale pour ces différentes mesures de risque. Nous étudions alors l’impact de la dangerosité des risques et de la dépendance entre les branches sur cette allocation optimale === This PhD thesis presents new models and new results in ruin theory, in the case where claim amounts are heavy-tailed distributed. Classical assumptions like independence and stationarity and univariate analysis are sometimes too restrictive to describe the complex evolution of the reserves of an insurance company. In a dependence context, asymptotics of univariate finite-time ruin probability are computed. This dependence, and the other model parameters are modulated by a Markovian environment process to take into account possible correlation crisis. Then, we introduce some models which describe dependence between claim amounts and claim interarrival times we can find in earthquake or flooding risks. In multivariate framework, we present some risk criteria like multivariate ruin probability or the expectation of the timeintegrated negative part of the risk process. We solve some problems of optimal allocation for these risk measures. Then, we study the impact of the risk dangerousness and of the dependence between lines on this optimal allocation. |
---|