Summary: | Le couplage oxydant du méthane (OCM) est une réaction complexe de catalyse hétérogène, permettant la conversion directe du méthane en éthylène, pour un coût énergétique moindre par rapport aux procédés industriels indirects actuels. L’OCM nécessite une température supérieure à 700°C, à pression atmosphérique. Il y a donc compétition avec l’oxydation totale. Dans les nombreuses études rapportées dans la littérature, la limite de 25 % de rendement en C2 (éthane + éthylène) n’a pas été franchie. Les mécanismes proposés ne sont pas applicables à tous les catalyseurs actifs ou valables pour un large domaine de conditions opératoires. Une nouvelle manière d’aborder cette réaction est de prendre en compte la plus large diversité possible des paramètres intervenant dans ce procédé, de la formulation aux réacteurs en vue d'optimiser les performances. La présente étude a permis d’extraire des descripteurs pertinents du processus de l’OCM à partir de données expérimentales et d’établir certaines corrélations entre descripteurs et performances. Des catalyseurs LaSrCaO ont été sélectionnés après tests à haut débit en réacteur parallèle à lit fixe et un modèle micro-cinétique de l’OCM dans ce réacteur a été validé grâce aux données obtenues. D’autres expériences ont été menées avec succès en réacteur à membrane dense pour améliorer la productivité en éthylène. Le rôle joué par la composition de surface des catalyseurs a été identifié et une analyse critique de la méthode générale mise en œuvre conclut ce travail === The oxidative coupling of methane (OCM) is a complex heterogeneous catalytic reaction allowing the direct conversion of methane to ethylene, at a lower energetic cost than the current industrial processes. OCM requires a temperature higher than 700°C at atmospheric pressure. Hence, there is competition with total oxidation. In the numerous studies reported in literature, the limit of 25% C2 (ethane + ethylene) yield could not be overtaken. Proposed mechanisms are not relevant for all active materials or on all operating condition ranges. A new way to approach the reaction would be to take into account the wider possible panel of parameters involved in this process, from formulation to reactors targeting at process optimisation. The present study permitted to extract relevant descriptors of OCM process from experimental data and establish relationships between descriptors and performances. LaSrCaO catalysts were selected and tested in a parallel fixed-bed reactor and the data obtained were used to validate a micro-kinetic model in this reactor. Experiments were also performed successfully in a dense membrane reactor to improve ethylene productivity. The role played catalyst surface composition was also identified and a critical analysis of the global method implemented concludes this work
|