Credit risk models under partial information

Cette thèse se compose de cinq parties indépendantes dédiées à la modélisation et à l’étude des problèmes liés au risque du défaut, en information partielle. La première partie constitue l’Introduction. La deuxième partie est dédiée au calcul de la probabilité de survie d’une firme, conditionnelleme...

Full description

Bibliographic Details
Main Author: Callegaro, Giorgia
Other Authors: Evry-Val d'Essonne
Language:en
Published: 2010
Subjects:
Online Access:http://www.theses.fr/2010EVRY0031/document
id ndltd-theses.fr-2010EVRY0031
record_format oai_dc
spelling ndltd-theses.fr-2010EVRY00312019-04-17T05:10:31Z Credit risk models under partial information Modèles de risque de crédit en information partielle Information partielle Partial information Cette thèse se compose de cinq parties indépendantes dédiées à la modélisation et à l’étude des problèmes liés au risque du défaut, en information partielle. La première partie constitue l’Introduction. La deuxième partie est dédiée au calcul de la probabilité de survie d’une firme, conditionnellement à l’information à disposition de l’investisseur, dans un modèle structurel en information partielle. On utilise une technique numérique hybride basée sur la méthode Monte Carlo et la quantification optimale. Dans la troisième partie on traite, avec l’approche Programmation Dynamique, un problème en temps discret de maximisation de l’utilité de la richesse terminale, dans un marché où des titres soumis au risque du défaut sont négociés. Le risque de contagion entre les défauts est modélisé, ainsi que la possible incertitude du modèle. Dans la quatrième partie on s’intéresse au problème de l’incertitude liée à l’horizon temporel d’investissement. Dans un marché complet soumis au risque du défaut, on résout, soit avec la méthode martingale, soit avec la Programmation Dynamique, trois problèmes de maximisation de l’utilité de la consommation: quand l’horizon temporel est fixe, fini mais incertain et infini. Enfin, dans la cinquième partie on traite un problème purement théorique. Dans le contexte du grossissement de filtrations, notre but est de redémontrer, dans un cadre spécifique, les résultats déjà connus sur la caractérisation des martingales, la décomposition des martingales par rapport à la filtration de référence comme semimartingales dans les filtrations progressivement et initialement grossies et le Théorème de Représentation Prévisible. This Ph.D. thesis consists of five independent parts devoted to the modeling and to studying problems related to default risk, under partial information. The first part constitutes the Introduction. The second part is devoted to the computation of survival probabilities of a firm, conditionally to the information available to the investor, in a structural model, under partial information. We exploit a numerical hybrid technique based on the application of the Monte Carlo method and of optimal quantization. In the third part we deal, by means of the Dynamic Programming, with a discrete time maximization of the expected utility from terminal wealth problem, in a market where defaultable assets are traded. Contagion risk between the default times is modeled, as well as model uncertainty, by working under partial information. In the fourth part we are interested in studying the problem linked to the uncertainty of the investment horizon. In a complete market model subject to default risk, we solve, both with the martingale method and with the Dynamic Programming, three different problems of maximization of expected utility from consumption: when the investment horizon is fixed, finite but uncertain, and infinite. Finally, in the fifth part we deal with a purely theoretical problem. In the context of enlargement of filtrations our aim is to retrieve, in a specific setting, the already known results on martingales’ characterization, on the decomposition of martingales with respect to the reference filtration as semi-martingales in the progressively and in the initially enlarged filtrations and the Predictable Representation Theorem. Electronic Thesis or Dissertation Text Image en http://www.theses.fr/2010EVRY0031/document Callegaro, Giorgia 2010-10-20 Evry-Val d'Essonne Scuola normale superiore (Pise, Italie) Jeanblanc, Monique Runggaldier, Wolfgang J.
collection NDLTD
language en
sources NDLTD
topic Information partielle
Partial information

spellingShingle Information partielle
Partial information

Callegaro, Giorgia
Credit risk models under partial information
description Cette thèse se compose de cinq parties indépendantes dédiées à la modélisation et à l’étude des problèmes liés au risque du défaut, en information partielle. La première partie constitue l’Introduction. La deuxième partie est dédiée au calcul de la probabilité de survie d’une firme, conditionnellement à l’information à disposition de l’investisseur, dans un modèle structurel en information partielle. On utilise une technique numérique hybride basée sur la méthode Monte Carlo et la quantification optimale. Dans la troisième partie on traite, avec l’approche Programmation Dynamique, un problème en temps discret de maximisation de l’utilité de la richesse terminale, dans un marché où des titres soumis au risque du défaut sont négociés. Le risque de contagion entre les défauts est modélisé, ainsi que la possible incertitude du modèle. Dans la quatrième partie on s’intéresse au problème de l’incertitude liée à l’horizon temporel d’investissement. Dans un marché complet soumis au risque du défaut, on résout, soit avec la méthode martingale, soit avec la Programmation Dynamique, trois problèmes de maximisation de l’utilité de la consommation: quand l’horizon temporel est fixe, fini mais incertain et infini. Enfin, dans la cinquième partie on traite un problème purement théorique. Dans le contexte du grossissement de filtrations, notre but est de redémontrer, dans un cadre spécifique, les résultats déjà connus sur la caractérisation des martingales, la décomposition des martingales par rapport à la filtration de référence comme semimartingales dans les filtrations progressivement et initialement grossies et le Théorème de Représentation Prévisible. === This Ph.D. thesis consists of five independent parts devoted to the modeling and to studying problems related to default risk, under partial information. The first part constitutes the Introduction. The second part is devoted to the computation of survival probabilities of a firm, conditionally to the information available to the investor, in a structural model, under partial information. We exploit a numerical hybrid technique based on the application of the Monte Carlo method and of optimal quantization. In the third part we deal, by means of the Dynamic Programming, with a discrete time maximization of the expected utility from terminal wealth problem, in a market where defaultable assets are traded. Contagion risk between the default times is modeled, as well as model uncertainty, by working under partial information. In the fourth part we are interested in studying the problem linked to the uncertainty of the investment horizon. In a complete market model subject to default risk, we solve, both with the martingale method and with the Dynamic Programming, three different problems of maximization of expected utility from consumption: when the investment horizon is fixed, finite but uncertain, and infinite. Finally, in the fifth part we deal with a purely theoretical problem. In the context of enlargement of filtrations our aim is to retrieve, in a specific setting, the already known results on martingales’ characterization, on the decomposition of martingales with respect to the reference filtration as semi-martingales in the progressively and in the initially enlarged filtrations and the Predictable Representation Theorem.
author2 Evry-Val d'Essonne
author_facet Evry-Val d'Essonne
Callegaro, Giorgia
author Callegaro, Giorgia
author_sort Callegaro, Giorgia
title Credit risk models under partial information
title_short Credit risk models under partial information
title_full Credit risk models under partial information
title_fullStr Credit risk models under partial information
title_full_unstemmed Credit risk models under partial information
title_sort credit risk models under partial information
publishDate 2010
url http://www.theses.fr/2010EVRY0031/document
work_keys_str_mv AT callegarogiorgia creditriskmodelsunderpartialinformation
AT callegarogiorgia modelesderisquedecrediteninformationpartielle
_version_ 1719018853121392640