The influence of hydrogen gas exposure and low temperature on the tribological characteristics of ti-6al-4v

This research studies individual and combined effects of hydrogen gas exposure and low temperature on the tribological characteristics of Ti-6Al-4V. Experimental approaches include test system modification and tribological analysis. An existing ballon- disk tribometer was modified to allow liquid ni...

Full description

Bibliographic Details
Main Author: Gola, Ryan Travis
Other Authors: Liang, Hong
Format: Others
Language:en_US
Published: 2010
Subjects:
Online Access:http://hdl.handle.net/1969.1/ETD-TAMU-3193
http://hdl.handle.net/1969.1/ETD-TAMU-3193
Description
Summary:This research studies individual and combined effects of hydrogen gas exposure and low temperature on the tribological characteristics of Ti-6Al-4V. Experimental approaches include test system modification and tribological analysis. An existing ballon- disk tribometer was modified to allow liquid nitrogen to be constantly injected into an insulated test chamber to enable testing at low temperature. Twelve 3.8 cm diameter Ti-6Al-4V disks were manufactured and polished, then half were exposed to pure hydrogen gas at elevated temperature and pressure and the remaining disks were untreated. The testing was split in to four groups of three disks based on testing temperature and previous hydrogen exposure. A silicon nitride ball was used for all tests. Each group was tested at two normal loads, 10N and 20N, at the same linear speed. Group 1 was unexposed and tested at room temperature, Group 2 was unexposed and tested at low temperature, Group 3 was exposed and tested at room temperature and Group 4 was exposed and tested at low temperature. Average friction coefficients and the specific wear rate were calculated from the test data. Also high-resolution digital microscope imaging was used to observe and characterize the wear mechanisms of the four groups of samples. Results show that hydrogen exposure facilitated adhesive wear of the surface and that low temperature induced a slip-stick wear mechanism under higher loads, but not at lower loads and regardless of exposure to hydrogen gas. This research opens avenues for future investigation in effects of hydrogen and low temperature embrittlement on the tribological performance of materials. With the increasing interests in hydrogen energy, the present work established a foundation for future study.