Improvement of PNP Problem Computational Efficiency For Known Target Geometry of Cubesats

This thesis considers the Perspective-N-Point (PNP) problem with orthogonal target geometry, as seen in the problem of cubesat relative navigation. Cubesats are small spacecraft often developed for research purposes and to perform missions in space at low cost. Sensor systems for cubesats have been...

Full description

Bibliographic Details
Main Author: Hafer, William
Other Authors: Reed, Helen L.
Format: Others
Language:en_US
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/1969.1/ETD-TAMU-2012-05-10958
id ndltd-tamu.edu-oai-repository.tamu.edu-1969.1-ETD-TAMU-2012-05-10958
record_format oai_dc
spelling ndltd-tamu.edu-oai-repository.tamu.edu-1969.1-ETD-TAMU-2012-05-109582013-01-08T10:43:45ZImprovement of PNP Problem Computational Efficiency For Known Target Geometry of CubesatsHafer, WilliamPNP problemP3P problemKnown target geometrySpacecraft relative navigation from vector measurementsThis thesis considers the Perspective-N-Point (PNP) problem with orthogonal target geometry, as seen in the problem of cubesat relative navigation. Cubesats are small spacecraft often developed for research purposes and to perform missions in space at low cost. Sensor systems for cubesats have been designed that, by providing vector (equivalently line-of-sight, angle, and image plane) measurements, equate relative navigation to a PNP problem. Much study has been done on this problem, but little of it has considered the case where target geometry is known in advance, as is the case with cooperating cubesats. A typical constraint for cubesats, as well as other PNP applications, is processing resources. Therefore, we considered the ability to reduce processing burden of the PNP solution by taking advantage of the known target geometry. We did this by considering a specific P3P solver and a specific point-cloud correspondence (PCC) solver for disambiguating/improving the estimate, and modifying them both to take into account a known orthogonal geometry. The P3P solver was the Kneip solver, and the point-cloud-correspondence solver was the Optimal Linear Attitude Estimator (OLAE). We were able to achieve over 40% reduction in the computational time of the P3P solver, and around 10% for the PCC solver, vs. the unmodified solvers acting on the same problems. It is possible that the Kneip P3P solver was particularly well suited to this approach. Nevertheless, these findings suggest similar investigation may be worthwhile for other PNP solvers, if (1) processing resources are scarce, and (2) target geometry can be known in advance.Reed, Helen L.2012-07-16T15:58:12Z2012-07-16T20:23:57Z2012-07-16T15:58:12Z2012-052012-07-16May 2012thesistextapplication/pdfhttp://hdl.handle.net/1969.1/ETD-TAMU-2012-05-10958en_US
collection NDLTD
language en_US
format Others
sources NDLTD
topic PNP problem
P3P problem
Known target geometry
Spacecraft relative navigation from vector measurements
spellingShingle PNP problem
P3P problem
Known target geometry
Spacecraft relative navigation from vector measurements
Hafer, William
Improvement of PNP Problem Computational Efficiency For Known Target Geometry of Cubesats
description This thesis considers the Perspective-N-Point (PNP) problem with orthogonal target geometry, as seen in the problem of cubesat relative navigation. Cubesats are small spacecraft often developed for research purposes and to perform missions in space at low cost. Sensor systems for cubesats have been designed that, by providing vector (equivalently line-of-sight, angle, and image plane) measurements, equate relative navigation to a PNP problem. Much study has been done on this problem, but little of it has considered the case where target geometry is known in advance, as is the case with cooperating cubesats. A typical constraint for cubesats, as well as other PNP applications, is processing resources. Therefore, we considered the ability to reduce processing burden of the PNP solution by taking advantage of the known target geometry. We did this by considering a specific P3P solver and a specific point-cloud correspondence (PCC) solver for disambiguating/improving the estimate, and modifying them both to take into account a known orthogonal geometry. The P3P solver was the Kneip solver, and the point-cloud-correspondence solver was the Optimal Linear Attitude Estimator (OLAE). We were able to achieve over 40% reduction in the computational time of the P3P solver, and around 10% for the PCC solver, vs. the unmodified solvers acting on the same problems. It is possible that the Kneip P3P solver was particularly well suited to this approach. Nevertheless, these findings suggest similar investigation may be worthwhile for other PNP solvers, if (1) processing resources are scarce, and (2) target geometry can be known in advance.
author2 Reed, Helen L.
author_facet Reed, Helen L.
Hafer, William
author Hafer, William
author_sort Hafer, William
title Improvement of PNP Problem Computational Efficiency For Known Target Geometry of Cubesats
title_short Improvement of PNP Problem Computational Efficiency For Known Target Geometry of Cubesats
title_full Improvement of PNP Problem Computational Efficiency For Known Target Geometry of Cubesats
title_fullStr Improvement of PNP Problem Computational Efficiency For Known Target Geometry of Cubesats
title_full_unstemmed Improvement of PNP Problem Computational Efficiency For Known Target Geometry of Cubesats
title_sort improvement of pnp problem computational efficiency for known target geometry of cubesats
publishDate 2012
url http://hdl.handle.net/1969.1/ETD-TAMU-2012-05-10958
work_keys_str_mv AT haferwilliam improvementofpnpproblemcomputationalefficiencyforknowntargetgeometryofcubesats
_version_ 1716505305348571136