Involvement of PFKFB3/iPFK2 in the Effects of Leucine and n-3 PUFA in Adipocytes

Studies had shown that leucine supplementation increases insulin sensitivity and it has been studied that n-3 PUFA may have an anti-inflammatory effect in adipocytes. However, the extent to which dietary sources such as leucine and/or n-3 PUFA act through PFKFB3/iPFK2 to suppress adipocyte inflammat...

Full description

Bibliographic Details
Main Author: Halim, Vera
Other Authors: Wu, Chaodong
Format: Others
Language:en_US
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/1969.1/ETD-TAMU-2011-12-10668
Description
Summary:Studies had shown that leucine supplementation increases insulin sensitivity and it has been studied that n-3 PUFA may have an anti-inflammatory effect in adipocytes. However, the extent to which dietary sources such as leucine and/or n-3 PUFA act through PFKFB3/iPFK2 to suppress adipocyte inflammatory response has not been studied; PFKFB3/iPFK2 is a regulator that links adipocyte metabolism and inflammatory responses. In this study, the involvement of PFKFB3/iPFK2 in the effects of insulin sensitizing and anti-inflammatory effect of leucine and/or n-3 PUFA are explored using cultured 3T3-L1 adipocytes including wild-type cells, PFKFB3-control cells (iPFK2-Ctrl) and PFKFB3-knockdown cells (iPFK2-KD). In iPFK2-Ctrl cells, leucine supplementation appears to have insulin-sensitizing effects through improving p-Akt/Akt insulin signaling, but have no effect on adiponectin expression, and appear to have limited anti-inflammatory effects. n-3 PUFA supplementation appears to have limited effects on both insulin sensitizing and anti-inflammatory effects in iPFK2-Ctrl. In contrast, n-3 PUFA exhibit pro-inflammatory expression in iPFK2-KD. The results of this study support the hypothesis that PFKFB3/iPFK2 is critically involved in insulin-sensitizing effects of leucine. This role of PFKFB3/iPFK2, however, appears to be independent of anti-inflammatory responses. Given this, it is likely that PFKFB3/iPFK2 only account, in part, for the beneficial effects of leucine. n-3 PUFA stimulate PFKFB3/iPFK2 activity in wild-type adipocytes. However, PUFA do not exhibit anti-inflammatory and insulin-sensitizing effects in controls. In contrast, n3-PUFA exhibit proinflammatory effects in iPFK2-KD cells. Taken together, PFKFB3/iPFK2 is involved, at least in part, in the effects of insulin sensitization of leucine and appears to protect adipocytes from inflammatory responses, which could be exacerbated by n-3 PUFA when PFKFB3/iPFK2 is disrupted.