Effects of Nutrient Additions on Three Coastal Salt Marsh Plants Found in Sunset Cove, Texas

Eutrophication, particularly due to nitrogen (N) and phosphorus (P) input, has been massively altered by anthropogenic activities. Thus it is important to understand the impact on salt marsh plants; however studies on salt marsh plants within Galveston Bay, Texas are limited. In this study, the effe...

Full description

Bibliographic Details
Main Author: Rulon, Leslie
Other Authors: Quigg, Antonietta
Format: Others
Language:en_US
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/1969.1/ETD-TAMU-2010-12-8798
Description
Summary:Eutrophication, particularly due to nitrogen (N) and phosphorus (P) input, has been massively altered by anthropogenic activities. Thus it is important to understand the impact on salt marsh plants; however studies on salt marsh plants within Galveston Bay, Texas are limited. In this study, the effects of repeated nutrient additions in monospecific plots of Spartina alterniflora, Batis maritima¸ and Salicornia virginica as well as mixed plots of B. maritima and S. virginica were studied over 15 months. Results showed that nutrient loading led to an increase in height, biomass, growth rate and percent nitrogen (N) within all three species studied, but were species specific more than dose dependent. Nitrogen content in leaves had a positive correlation with P content in leaves but a negative correlation with carbon (C) content. Nutrient loading lead to a significant increase in total chlorophyll in the fertilized plots of S. alterniflora and S. virginica one month into the study. Nutrient addition to two succulent species, B. maritima and S. virginica in mixed plots did not reveal a distinct superior competitor within the 15 month study in terms of growth and nutrient use efficiencies; however using the maximum growth rates of the monospecific plots, the Monod model was used to determine which species would dominate at high nutrient loads. Based on height data S. alterniflora would dominate, while B. maritima would dominate according to the Monod model based on biomass.