Tuning the Properties of Molecular Magnets and Conductors Based on Lanthanide and Transition Metal Ions Bridged by TCNQ Derivatives or Cyanometallate Ligands by Varying the Dimensionality of the Structure and Metal Ion Identity

Research in the fields of molecular conductors and magnets over the past four decades has involved collaborative efforts of chemists and physicists whose common goal is to design useful materials composed of molecular building blocks. Of particular interest are materials whose properties can be tune...

Full description

Bibliographic Details
Main Author: Lopez Cruz, Nazario
Other Authors: Dunbar, Kim R.
Format: Others
Language:en_US
Published: 2011
Subjects:
Online Access:http://hdl.handle.net/1969.1/ETD-TAMU-2010-05-7818
id ndltd-tamu.edu-oai-repository.tamu.edu-1969.1-ETD-TAMU-2010-05-7818
record_format oai_dc
spelling ndltd-tamu.edu-oai-repository.tamu.edu-1969.1-ETD-TAMU-2010-05-78182013-01-08T10:42:07ZTuning the Properties of Molecular Magnets and Conductors Based on Lanthanide and Transition Metal Ions Bridged by TCNQ Derivatives or Cyanometallate Ligands by Varying the Dimensionality of the Structure and Metal Ion IdentityLopez Cruz, NazarioMolecular magnetsMolecular conductorsLanthanide ionsTransition metal ionsOrganic radicalsTCNQ derivativesCyanometallate LigandsResearch in the fields of molecular conductors and magnets over the past four decades has involved collaborative efforts of chemists and physicists whose common goal is to design useful materials composed of molecular building blocks. Of particular interest are materials whose properties can be tuned by electronic or steric changes in the molecular sub-units. The research on TCNQ derivatives described in this thesis was inspired by the observation that, although a vast amount of research has been directed at understanding binary M(TCNQ•-) materials, analogous compounds based on substituted TCNQ acceptors are surprisingly scarce. Single crystals of a new structure type for the M+(TCNQ)•- binary family were isolated from reactions of two dihalogenated TCNQ derivatives with Cu(I) ions, namely Cu(TCNQX2) (X = Cl, Br). The new 3-D compound Cu(TCNQCl2) exhibits the highest conductivity of the M+(TCNQ)•- series to date, despite the greater separation of TCNQCl2 units as compared to other derivatives. Compounds of lower dimensionality were also obtained, namely the 2-D Cu(TCNQBr2)(CH3CN) and 1-D Cu(TCNQI2)(CH3CN)2 phases. Several 2p-3d heterospin molecular magnets were also synthesized. For example a “magnetic sponge” material based on a 2-D hexagonal framework of composition {[Mn2(TCNQF4)(CH3OH)7.5(H2O)0.5]-(TCNQF4)2•7.5CH3OH}∞, as well as molecular magnets based on first row metal ions and TCNQF4 ligands of composition MII(TCNQF4)-•(TCNQF42-)0.5(CH3CN) (M = Mn, Co) were prepared. In addition, unprecedented isostructural 2-D frameworks based on combinations of first row metal ions with TCNQBr2 radicals of composition [M(TCNQBr2)2(H2O)2]∞ (M = Mn, Zn) were synthesized. Lanthanide chemistry is also described in this dissertation. A series of mononuclear Ln-TCNQF4 heterospin complexes of composition {MIII[TCNQF4]2[H2O]x}(TCNQF4)(3H2O) (M = La, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er and Yb) was also obtained which exhibit remarkable properties. In this family of compounds there exists an unprecedented subtle interplay between single molecule magnetic behavior and phonon bottleneck effect behavior for the Tb analogue. Magnetic ordering was observed for the Sm analogue. A homologous series of 1-D materials based on alternating lanthanide ions and hexacyanometallates of formula {[Ln(tptz)(H2O)4Fe(CN)6]•8H2O}∞ (Ln = Pr, Nd, Sm, Eu, Gd, Tb) was obtained and a detailed magnetic study provided incontrovertible evidence that the SmIII-[FeIII(CN)6]3- compound exhibits ferromagnetic and not antiferromagnetic coupling as had been reported for related 1-D chains.Dunbar, Kim R.2011-08-08T22:47:51Z2011-08-09T01:28:48Z2011-08-08T22:47:51Z2011-08-09T01:28:48Z2010-052011-08-08May 2010thesistextapplication/pdfhttp://hdl.handle.net/1969.1/ETD-TAMU-2010-05-7818en_US
collection NDLTD
language en_US
format Others
sources NDLTD
topic Molecular magnets
Molecular conductors
Lanthanide ions
Transition metal ions
Organic radicals
TCNQ derivatives
Cyanometallate Ligands
spellingShingle Molecular magnets
Molecular conductors
Lanthanide ions
Transition metal ions
Organic radicals
TCNQ derivatives
Cyanometallate Ligands
Lopez Cruz, Nazario
Tuning the Properties of Molecular Magnets and Conductors Based on Lanthanide and Transition Metal Ions Bridged by TCNQ Derivatives or Cyanometallate Ligands by Varying the Dimensionality of the Structure and Metal Ion Identity
description Research in the fields of molecular conductors and magnets over the past four decades has involved collaborative efforts of chemists and physicists whose common goal is to design useful materials composed of molecular building blocks. Of particular interest are materials whose properties can be tuned by electronic or steric changes in the molecular sub-units. The research on TCNQ derivatives described in this thesis was inspired by the observation that, although a vast amount of research has been directed at understanding binary M(TCNQ•-) materials, analogous compounds based on substituted TCNQ acceptors are surprisingly scarce. Single crystals of a new structure type for the M+(TCNQ)•- binary family were isolated from reactions of two dihalogenated TCNQ derivatives with Cu(I) ions, namely Cu(TCNQX2) (X = Cl, Br). The new 3-D compound Cu(TCNQCl2) exhibits the highest conductivity of the M+(TCNQ)•- series to date, despite the greater separation of TCNQCl2 units as compared to other derivatives. Compounds of lower dimensionality were also obtained, namely the 2-D Cu(TCNQBr2)(CH3CN) and 1-D Cu(TCNQI2)(CH3CN)2 phases. Several 2p-3d heterospin molecular magnets were also synthesized. For example a “magnetic sponge” material based on a 2-D hexagonal framework of composition {[Mn2(TCNQF4)(CH3OH)7.5(H2O)0.5]-(TCNQF4)2•7.5CH3OH}∞, as well as molecular magnets based on first row metal ions and TCNQF4 ligands of composition MII(TCNQF4)-•(TCNQF42-)0.5(CH3CN) (M = Mn, Co) were prepared. In addition, unprecedented isostructural 2-D frameworks based on combinations of first row metal ions with TCNQBr2 radicals of composition [M(TCNQBr2)2(H2O)2]∞ (M = Mn, Zn) were synthesized. Lanthanide chemistry is also described in this dissertation. A series of mononuclear Ln-TCNQF4 heterospin complexes of composition {MIII[TCNQF4]2[H2O]x}(TCNQF4)(3H2O) (M = La, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er and Yb) was also obtained which exhibit remarkable properties. In this family of compounds there exists an unprecedented subtle interplay between single molecule magnetic behavior and phonon bottleneck effect behavior for the Tb analogue. Magnetic ordering was observed for the Sm analogue. A homologous series of 1-D materials based on alternating lanthanide ions and hexacyanometallates of formula {[Ln(tptz)(H2O)4Fe(CN)6]•8H2O}∞ (Ln = Pr, Nd, Sm, Eu, Gd, Tb) was obtained and a detailed magnetic study provided incontrovertible evidence that the SmIII-[FeIII(CN)6]3- compound exhibits ferromagnetic and not antiferromagnetic coupling as had been reported for related 1-D chains.
author2 Dunbar, Kim R.
author_facet Dunbar, Kim R.
Lopez Cruz, Nazario
author Lopez Cruz, Nazario
author_sort Lopez Cruz, Nazario
title Tuning the Properties of Molecular Magnets and Conductors Based on Lanthanide and Transition Metal Ions Bridged by TCNQ Derivatives or Cyanometallate Ligands by Varying the Dimensionality of the Structure and Metal Ion Identity
title_short Tuning the Properties of Molecular Magnets and Conductors Based on Lanthanide and Transition Metal Ions Bridged by TCNQ Derivatives or Cyanometallate Ligands by Varying the Dimensionality of the Structure and Metal Ion Identity
title_full Tuning the Properties of Molecular Magnets and Conductors Based on Lanthanide and Transition Metal Ions Bridged by TCNQ Derivatives or Cyanometallate Ligands by Varying the Dimensionality of the Structure and Metal Ion Identity
title_fullStr Tuning the Properties of Molecular Magnets and Conductors Based on Lanthanide and Transition Metal Ions Bridged by TCNQ Derivatives or Cyanometallate Ligands by Varying the Dimensionality of the Structure and Metal Ion Identity
title_full_unstemmed Tuning the Properties of Molecular Magnets and Conductors Based on Lanthanide and Transition Metal Ions Bridged by TCNQ Derivatives or Cyanometallate Ligands by Varying the Dimensionality of the Structure and Metal Ion Identity
title_sort tuning the properties of molecular magnets and conductors based on lanthanide and transition metal ions bridged by tcnq derivatives or cyanometallate ligands by varying the dimensionality of the structure and metal ion identity
publishDate 2011
url http://hdl.handle.net/1969.1/ETD-TAMU-2010-05-7818
work_keys_str_mv AT lopezcruznazario tuningthepropertiesofmolecularmagnetsandconductorsbasedonlanthanideandtransitionmetalionsbridgedbytcnqderivativesorcyanometallateligandsbyvaryingthedimensionalityofthestructureandmetalionidentity
_version_ 1716504814971518976