Transmutation of Transuranic Elements in Advanced MOX and IMF Fuel Assemblies Utilizing Multi-recycling Strategies

The accumulation of spent nuclear fuel may be hindering the expansion of nuclear electricity production. However, the reprocessing and recycling of spent fuel may reduce its volume and environmental burden. Although fast spectrum reactors are the preferred modality for transuranic element transmutat...

Full description

Bibliographic Details
Main Author: Zhang, Yunhuang
Other Authors: Ragusa, Jean C.
Format: Others
Language:en_US
Published: 2011
Subjects:
IMF
Online Access:http://hdl.handle.net/1969.1/ETD-TAMU-2009-12-7470
Description
Summary:The accumulation of spent nuclear fuel may be hindering the expansion of nuclear electricity production. However, the reprocessing and recycling of spent fuel may reduce its volume and environmental burden. Although fast spectrum reactors are the preferred modality for transuranic element transmutation, such fast spectrum systems are in very short supply. It is therefore legitimate to investigate the recycling potential of thermal spectrum systems, which constitute the overwhelming majority of nuclear power plants worldwide. To do so efficiently, several new fuel assembly designs are proposed in this Thesis: these include (1) Mixed Oxide Fuel (MOX), (2) MOX fuel with Americium coating, (3) Inert-Matrix Fuel (IMF) with UOX as inner zone, and (4) IMF with MOX as inner zone. All these designs are investigated in a multi-recycling strategy, whereby the spent fuel from a given generation is re-used for the next generation. The accumulation of spent nuclear fuel may be hindering the expansion of nuclear electricity production. However, the reprocessing and recycling of spent fuel may reduce its volume and environmental burden. Although fast spectrum reactors are the preferred modality for transuranic element transmutation, such fast spectrum systems are in very short supply. It is therefore legitimate to investigate the recycling potential of thermal spectrum systems, which constitute the overwhelming majority of nuclear power plants worldwide. To do so efficiently, several new fuel assembly designs are proposed in this Thesis: these include (1) Mixed Oxide Fuel (MOX), (2) MOX fuel with Americium coating, (3) Inert-Matrix Fuel (IMF) with UOX as inner zone, and (4) IMF with MOX as inner zone. All these designs are investigated in a multi-recycling strategy, whereby the spent fuel from a given generation is re-used for the next generation.