Performance Analysis of Fully Joint Diversity Combining, Adaptive Modulation, and Power Control Schemes

Adaptive modulation and diversity combining represent very important adaptive solutions for future generations of wireless communication systems. Indeed, to improve the performance and the efficiency of these systems, these two techniques recently have been used jointly in new schemes named joint ad...

Full description

Bibliographic Details
Main Author: Bouida, Zied
Other Authors: Qaraqe, Khalid A.
Format: Others
Language:en_US
Published: 2010
Subjects:
Online Access:http://hdl.handle.net/1969.1/ETD-TAMU-2009-08-7005
http://hdl.handle.net/1969.1/ETD-TAMU-2009-08-7005
Description
Summary:Adaptive modulation and diversity combining represent very important adaptive solutions for future generations of wireless communication systems. Indeed, to improve the performance and the efficiency of these systems, these two techniques recently have been used jointly in new schemes named joint adaptive modulation and diversity combining (JAMDC) schemes. Considering the problem of finding lowcomplexity, bandwidth-efficient, and processing-power efficient transmission schemes for a downlink scenario and capitalizing on some of these recently proposed JAMDC schemes, we propose and analyze three fully joint adaptive modulation, diversity combining, and power control (FJAMDC) schemes. More specifically, the modulation constellation size, the number of combined diversity paths, and the needed power level are determined jointly to achieve the highest spectral efficiency with the lowest possible combining complexity, given the fading channel conditions and the required bit error rate (BER) performance. The performance of these three FJAMDC schemes is analyzed in terms of their spectral efficiency, processing power consumption, and error-rate performance. Selected numerical examples show that these schemes considerably increase the spectral efficiency of the existing JAMDC schemes with a slight increase in the average number of combined paths for the low signal to noise ratio range while maintaining compliance with the BER performance and a low radiated power resulting in a substantial decrease in interference to co-existing systems/users.