Dynamic and Robust Capacitated Facility Location in Time Varying Demand Environments

This dissertation studies models for locating facilities in time varying demand environments. We describe the characteristics of the time varying demand that motivate the analysis of our location models in terms of total demand and the change in value and location of the demand of each customer. The...

Full description

Bibliographic Details
Main Author: Torres Soto, Joaquin
Other Authors: Uster, Halit
Format: Others
Language:English
Published: 2010
Subjects:
Online Access:http://hdl.handle.net/1969.1/ETD-TAMU-2009-05-620
Description
Summary:This dissertation studies models for locating facilities in time varying demand environments. We describe the characteristics of the time varying demand that motivate the analysis of our location models in terms of total demand and the change in value and location of the demand of each customer. The first part of the dissertation is devoted to the dynamic location model, which determines the optimal time and location for establishing capacitated facilities when demand and cost parameters are time varying. This model minimizes the total cost over a discrete and finite time horizon for establishing, operating, and closing facilities, including the transportation costs for shipping demand from facilities to customers. The model is solved using Lagrangian relaxation and Benders? decomposition. Computational results from different time varying total demand structures demonstrate, empirically, the performance of these solution methods. The second part of the dissertation studies two location models where relocation of facilities is not allowed and the objective is to determine the optimal location of capacitated facilities that will have a good performance when demand and cost parameters are time varying. The first model minimizes the total cost for opening and operating facilities and the associated transportation costs when demand and cost parameters are time varying. The model is solved using Benders? decomposition. We show that in the presence of high relocation costs of facilities (opening and closing costs), this model can be solved as a special case by the dynamic location model. The second model minimizes the maximum regret or opportunity loss between a robust configuration of facilities and the optimal configuration for each time period. We implement local search and simulated annealing metaheuristics to efficiently obtain near optimal solutions for this model.