Active flow control in an advanced serpentine jet engine inlet duct

An experimental investigation was performed to understand the development and suppression of the secondary flow structures within a compact, serpentine jet engine inlet duct. By employing a variety of flow diagnostic techniques, the formation of a pair of counter-rotating vortices was revealed. A mo...

Full description

Bibliographic Details
Main Author: Kirk, Aaron Michael
Other Authors: Rediniotis, Othon K.
Format: Others
Language:en_US
Published: 2010
Subjects:
SJA
Online Access:http://hdl.handle.net/1969.1/ETD-TAMU-1027
http://hdl.handle.net/1969.1/ETD-TAMU-1027
Description
Summary:An experimental investigation was performed to understand the development and suppression of the secondary flow structures within a compact, serpentine jet engine inlet duct. By employing a variety of flow diagnostic techniques, the formation of a pair of counter-rotating vortices was revealed. A modular fluidic actuator system that would apply several different methods of flow control was then designed and manufactured to improve duct performance. At the two bends of the inlet, conformal flow control devices were installed to deliver varying degrees of boundary layer suction, suction and steady fluid injection, and suction and oscillatory injection. Testing showed that suction alone could delay flow separation and improve the pressure recovery of the duct by as much as 70%. However, this technique was not able to rid the duct completely of the nonuniformities that exist at the engine face plane. Suction with steady blowing, however, increased pressure recovery by 37% and reduced distortion by 41% at the engine face. Suction with pulsed injection had the least degree of success in suppressing the secondary flow structures, with improvements in pressure recovery of only 16.5% and a detrimental impact on distortion. The potential for gains in the aerodynamic efficiency of serpentine inlets by active flow control was demonstrated in this study.