Resource allocation in DS-CDMA systems with side information at the transmitter

In a multiuser DS-CDMA system with frequency selectivity, each user’s spreading sequence is transmitted through a different channel and the autocorrelation and the cross correlation properties of the received sequences will not be the same as that of the transmitted sequences. The best way of d...

Full description

Bibliographic Details
Main Author: Peiris, Bemini Hennadige Janath
Other Authors: Miller, Soctt L.
Format: Others
Language:en_US
Published: Texas A&M University 2007
Subjects:
Online Access:http://hdl.handle.net/1969.1/5004
Description
Summary:In a multiuser DS-CDMA system with frequency selectivity, each user’s spreading sequence is transmitted through a different channel and the autocorrelation and the cross correlation properties of the received sequences will not be the same as that of the transmitted sequences. The best way of designing spreading sequences for frequency selective channels is to design them at the receiver exploiting the users’ channel characteristics. By doing so, we can show that the designed sequences outperform single user AWGN performance. In existing sequence design algorithms for frequency selective channels, the design is done in the time domain and the connection to frequency domain properties is not established. We approach the design of spreading sequences based on their frequency domain characteristics. Based on the frequency domain characteristics of the spreading sequences with unconstrained amplitudes and phases, we propose a reduced-rank sequence design algorithm that reduces the computational complexity, feedback bandwidth and improves the performance of some existing sequence design algorithms proposed for frequency selective channels. We propose several different approaches to design the spreading sequences with constrained amplitudes and phases for frequency selective channels. First, we use the frequency domain characteristics of the unconstrained spreading sequences to find a set of constrained amplitude sequences for a given set of channels. This is done either by carefully assigning an already existing set of sequences for a given set of users or by mapping unconstrained sequences onto a unit circle. Secondly, we use an information theoretic approach to design the spreading sequences by matching the spectrum of each user’s sequence to the water-filling spectrum of the user’s channel. Finally, the design of inner shaping codes for single-head and multi-head magnetic recoding channels is discussed. The shaping sequences are designed considering them as short spreading codes matched to the recoding channels. The outer channel code is matched to the inner shaping code using the extrinsic information transfer chart analysis. In this dissertation we introduce a new frequency domain approach to design spreading sequences for frequency selective channels. We also extend this proposed technique to design inner shaping codes for partial response channels.