Modeling Impacts of Land-Use/Land-Cover Change and Variable Precipitation on Hydrology and Water Quality of a Coastal Watershed in Texas

Land use/land cover (LULC) change and variations in precipitation can alter the quantity and quality of freshwater flows. The Mission-Aransas (M-A) estuary depends on inputs of freshwater and material from streams in order to maintain its ecological integrity. Freshwater inflow estimates for the M-A...

Full description

Bibliographic Details
Main Author: Castillo, Cesar Ricardo
Other Authors: Guneralp, Inci
Format: Others
Language:en
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/1969.1/151053
Description
Summary:Land use/land cover (LULC) change and variations in precipitation can alter the quantity and quality of freshwater flows. The Mission-Aransas (M-A) estuary depends on inputs of freshwater and material from streams in order to maintain its ecological integrity. Freshwater inflow estimates for the M-A estuary have been established, but no analyses using scenarios of LULC change and precipitation variability have been conducted that inform how freshwater inflows could be impacted. A land change analysis for the M-A region was conducted by classifying two Landsat images for the years 1990 and 2010. A large degree of LULC change occurred within the M-A region during this time; with 27.1% of the land area experiencing LULC change. Furthermore, developed land increased by 44.9%. A SWAT hydrological model was developed to model the quantity and quality of freshwater inflows. SWAT was calibrated at a monthly scale using data from a stream gage. Model evaluations indicated that the model had a good performance rating with a Nash-Sutcliffe model efficiency coefficient (NS) of 0.66 and coefficient of determination (R2) of 0.66 for the calibration period; and an NS of 0.76 and R2 of 0.78 for the validation period. Three LULC change scenarios and three precipitation scenarios were developed to be used in a scenario analysis with the calibrated SWAT model. Each LULC change scenario represents a different amount of developed land (3.4, 3.7, and 4.7% of watershed area). Precipitation data was analyzed to select weather data for each precipitation scenario that each had different amounts of annual precipitation (763, 907, and 996 mm). A scenario analysis was conducted that analyzed how stream/channel flows and loads of sediment, total nitrogen, and total phosphorus were impacted under scenario conditions. A general increase in all output variables was exhibited as the amount of precipitation and developed land increased; with impacts from precipitation variability outweighing impacts from varying amounts of developed land. Furthermore, sediment loads were the variable most impacted by differing amounts of developed land. This study provides information on how LULC and precipitation can influence watershed hydrology that can be used in watershed management for the M-A region.