Matrix Acidizing Core Flooding Apparatus: Equipment and Procedure Description

Core flooding is a commonly used experimental procedure in the petroleum industry. It involves pressurizing a reservoir rock and flowing fluid through it in the laboratory. The cylindrical rock, called a core, can be cut from the reservoir during a separate core drilling operation or a formation out...

Full description

Bibliographic Details
Main Author: Grabski, Elizabeth 1985-
Other Authors: Hill, A. Daniel
Format: Others
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/1969.1/148417
Description
Summary:Core flooding is a commonly used experimental procedure in the petroleum industry. It involves pressurizing a reservoir rock and flowing fluid through it in the laboratory. The cylindrical rock, called a core, can be cut from the reservoir during a separate core drilling operation or a formation outcrop. A core flooding apparatus suitable for matrix acidizing was designed and assembled. Matrix acidizing is a stimulation technique in which hydrochloric acid (HCl) is injected down the wellbore below formation fracture pressure to dissolve carbonate (CaCO3) rock creating high permeability streaks called wormholes. The main components of the apparatus include a continuous flow syringe pump, three core holders, a hydraulic hand pump, two accumulators, a back pressure regulator, and two pressure transducers connected through a series of tubing and valves. Due to the corrosive nature of the acid, the apparatus features Hastelloy which is a corrosion resistant metal alloy. Another substantial feature of the apparatus is the ability to apply 3000psi back pressure. This is the pressure necessary to keep CO2, a product of the CaCO3 and HCl reaction, in solution at elevated temperatures. To perform experiments at temperature, the core holder is wrapped with heating tape and surrounded by insulation. Tubing is wrapped around a heating band with insulation to heat the fluid before it enters the core. A LabVIEW graphical programming code was written to control heaters as well as record temperature and pressure drop across the core. Other considerations for the design include minimizing footprint, operational ease by the user, vertical placement of the accumulators and core holders to minimize gravity effects, and air release valves. Core floods can be performed at varying injection rates, temperatures and pressures up to 5000psi and 250 degF. The apparatus can handle small core plugs, 1’’ diameter X 1’’ length, up to 4’’ X 20’’ cores. The equipment description includes the purpose, relevant features, and connections to the system for each component. Finally documented is the procedure to run a core flooding test to determine permeability and inject acid complete with an analysis of pressure response data.