[pt] ESTUDO DE UMA UNIDADE CHP COMBINANDO UMA CÉLULA A COMBUSTÍVEL DO TIPO PEMFC, PAINÉIS FOTOVOLTAICOS E SISTEMA DE ARMAZENAMENTO: ANÁLISE 4E

[pt] A crescente demanda energética verificada ao redor do mundo e a conscientização pública acerca dos efeitos deletérios do excesso de gases estufa na atmosfera vem colaborando para a articulação de compromissos de grande alcance em nome da adaptação das matrizes energéticas a formas ambiental e e...

Full description

Bibliographic Details
Language:pt
Published: MAXWELL 2021
Subjects:
Online Access:https://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=56799@1
https://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=56799@2
http://doi.org/10.17771/PUCRio.acad.56799
Description
Summary:[pt] A crescente demanda energética verificada ao redor do mundo e a conscientização pública acerca dos efeitos deletérios do excesso de gases estufa na atmosfera vem colaborando para a articulação de compromissos de grande alcance em nome da adaptação das matrizes energéticas a formas ambiental e economicamente sustentáveis. A adesão à energias renováveis (como solar e eólica) e a descentralização da matriz energética por meio de tecnologias de geração distribuída (visando a melhoria da eficiência do uso da energia) são alguns dos movimentos mais relevantes realizados para fazer frente a essas demandas. Neste ínterim, o presente trabalho é dedicado à simulação numérica mediante o conceito 4E (Energy, Exergy, Environmental and Economic) de um sistema híbrido CHP (Combined Heat and Power) on-grid para atendimento de pequenas demandas residenciais ou industriais, tendo gás natural e energia solar como vetores energéticos preferenciais. O sistema inclui um reformador de gás natural para produção de gás de síntese rico em hidrogênio, uma célula a combustível com membrana de troca de prótons (PEM), painéis fotovoltaicos, baterias conectadas à rede elétrica por um inversor bidirecional, trocadores de calor e componentes auxiliares como compressores e boilers. Os componentes do sistema foram modelados separadamente com base em equações de conservação e seus modelos devidamente validados. Uma análise energética e exergética do reformador de gás natural foi conduzida mediante a metodologia de planejamento de experimentos a fim de avaliar a necessidade de considerar uma formulação complexa do combustível em vez de um substituto (metano puro). Posteriormente, estes modelos foram inseridos como módulos de uma rotina mais ampla destinada a simular o desempenho econômico do sistema integrado num intervalo de tempo de até 20 anos. Tal rotina, implementada no MATLAB, permite a flexibilização de critérios operacionais importantes como número de consumidores, configuração do sistema híbrido (armazenamento e participação de painéis fotovoltaicos), diferentes tipos de tarifa (convencional ou branca) e o possível uso de rejeito térmico para cogeração, enriquecendo o escopo de resultados obtidos. Paybacks entre 7 e 20 anos de operação do sistema foram alcançados para diferentes combinações dos parâmetros examinados considerando-se a adesão no ano de 2020, onde consumidores residenciais obtiveram resultados predominantemente melhores do que os industriais em virtude da demanda menos exigente dos primeiros. Foram também previstas reduções de até 50% no custo cumulativo total para consumidores residenciais referente a adesão ao sistema proposto por 20 anos, levando-se em conta a queda prevista nos custos de aquisição dos componentes para as próximas décadas. A avaliação do sistema em termos ambientais foi feita através da quantidade equivalente de CO2 por unidade de energia. Concluiu-se que a configuração completa, mesmo auxiliada por cogeração, supera a média de emissões da matriz energética brasileira (devido à alta participação das fontes renováveis nessa matriz), permanecendo, ainda assim, como uma opção melhor do que a combustão pura do gás natural, especialmente no que diz respeito ao atendimento de demanda térmica. === [en] The growing energy demand verified around the world and public awareness about the harmful effects of greenhouse gases excess in the atmosphere have been contributing to the articulation of far-reaching commitments in the name of adapt energy matrices to environmentally and economically sustainable ways. The adherence to renewable energy (such as solar and eolic) and descentralization of energy matrix through distributed generation technologies (aiming at the improvment of efficiency of energy use) are some of the more relevant movements done in order to deal with these demands. In the meantime, the present work is dedicated to numerical simulation using the 4E (Energy, Exergy, Environmental and Economic) concept of an on-grid hybrid CHP system to meet small residential or industrial demands, using natural gas and solar energy as preferred energy vectors. The system includes a natural gas reformer for the production of hydrogen-rich synthesis gas, a proton exchange membrane fuel cell (PEM), photovoltaic panels, batteries connected to the grid by a bidirectional inverter, heat exchanger and auxiliary componentes, such as compressors and boilers. The system components were modeled separately based on conservation equations and their models duly validated. An energy and exergy analysis of the natural gas reformer was conducted using design of experiment methodology in order to assess the necessity to consider a complex formulation of the fuel instead of a surrogate (pure methane). Subsequently, these models were inserted as modules of a broader routine designed to simulate the economic performance of the integrated system in a time interval of up to 20 years. This routine implemented in MATLAB allows for the flexibility of important operational criteria such as the number of consumers, configuration of the hybrid system (storage and participation of solar energy), different types of tariff (conventional or white) and the posible use of reject heat for cogeneration, enriching the scope of the results obtained. Paybacks between 7 and 20 years of system operation were achieved for different combinations of the examined parameters considering adherence in the year 2020, where residential consumers have predominantly obtained better results than industrial ones due to the less intense demand of the first ones. Reductions of up to 50% in the total cumulative cost related to adherence to the proposed system for 20 years for residential users were also foreseen, taking into account the expected drop in component acquisition costs over the next few decades. The evaluation of the system in environmental terms was assessed through equivalent amount of CO2 by energy unit. It was concluded that the complete configuration, even supported by cogeneration, exceeds the average of the brazilian energy matrix emissions (due to the high share of renewable sources in this matrix), nevertheless remaining as a better option than pure combustion of natural gas, specially for meeting thermal demand.