[pt] ALOCAÇÃO DE RECURSOS ONLINE DA PERSPECTIVA DE ANUNCIANTES
[pt] Nesse trabalho, propomos o problema AdInvest, que modela o processo decisiório de alocação de investimento em marketing digital do ponto de vista do anunciante. Para o problema proposto, definimos um algoritmo chamado balGreedy, e provamos suas garantias para instâncias determísticas e estocást...
Other Authors: | |
---|---|
Language: | en |
Published: |
MAXWELL
2020
|
Subjects: | |
Online Access: | https://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=49083@1 https://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=49083@2 http://doi.org/10.17771/PUCRio.acad.49083 |
id |
ndltd-puc-rio.br-oai-MAXWELL.puc-rio.br-49083 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-puc-rio.br-oai-MAXWELL.puc-rio.br-490832020-08-19T05:20:53Z[pt] ALOCAÇÃO DE RECURSOS ONLINE DA PERSPECTIVA DE ANUNCIANTES [en] ONLINE ADVERTISER-CENTRIC BUDGET ALLOCATION [pt] OTIMIZACAO ONLINE[pt] ANUNCIO EM DISPLAY[pt] PROJETO E ANALISE DE ALGORITMO[pt] TEORIA DA COMPUTACAO[en] ONLINE OPTIMIZATION[en] DISPLAY ADVERTISEMEN[en] DESIGN AND ANALYSIS OF ALGORITHM[en] THEORY OF COMPUTATION[pt] Nesse trabalho, propomos o problema AdInvest, que modela o processo decisiório de alocação de investimento em marketing digital do ponto de vista do anunciante. Para o problema proposto, definimos um algoritmo chamado balGreedy, e provamos suas garantias para instâncias determísticas e estocásticas do AdInvest. Os teoremas provados garantem ao nosso algoritmo resultados de pior caso relativamente próximos ao OPT, em diversos tipos de instâncias levantadas ao decorrer do trabalho. Em especial, focamos nas instâncias que modelam o efeito de saturação das audiências, que se faz presente na dinâmica de anúncios online. Como mostrado nos experimentos computacionais, o algoritmo balGreedy se mostrou consistentemente eficiente em comparação com as políticas alternativas adotadas, tanto nas instâncias que foram geradas por simulação, quanto em instâncias reais obtidas a partir de dados de um anunciante do Facebook Ads.[en] In this work, we propose the problem AdInvest, which models the decision-making process for allocating investment in digital marketing from the advertiser perspective. For the proposed problem, we define an algorithm called balGreedy, and we prove its guarantees in deterministic and stochastic instances of the AdInvest. The proven theorems assure to our algorithm worst-case results relatively close to OPT, in several types of instances raised during the work. In particular, we focus on the instances that model the audience saturation effect, which is present in the dynamics of online advertisements. As shown in the computational experiments, the balGreedy algorithm had been consistently efficient compared to the alternative policies adopted, both in the instances generated by simulation and in real instances built from the data of a certain Facebook Ads advertiser.MAXWELLMARCO SERPA MOLINAROMARCO SERPA MOLINAROMARCO SERPA MOLINARO2020-08-18TEXTOhttps://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=49083@1https://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=49083@2http://doi.org/10.17771/PUCRio.acad.49083en |
collection |
NDLTD |
language |
en |
sources |
NDLTD |
topic |
[pt] OTIMIZACAO ONLINE [pt] ANUNCIO EM DISPLAY [pt] PROJETO E ANALISE DE ALGORITMO [pt] TEORIA DA COMPUTACAO [en] ONLINE OPTIMIZATION [en] DISPLAY ADVERTISEMEN [en] DESIGN AND ANALYSIS OF ALGORITHM [en] THEORY OF COMPUTATION |
spellingShingle |
[pt] OTIMIZACAO ONLINE [pt] ANUNCIO EM DISPLAY [pt] PROJETO E ANALISE DE ALGORITMO [pt] TEORIA DA COMPUTACAO [en] ONLINE OPTIMIZATION [en] DISPLAY ADVERTISEMEN [en] DESIGN AND ANALYSIS OF ALGORITHM [en] THEORY OF COMPUTATION [pt] ALOCAÇÃO DE RECURSOS ONLINE DA PERSPECTIVA DE ANUNCIANTES |
description |
[pt] Nesse trabalho, propomos o problema AdInvest, que modela o processo decisiório de alocação de investimento em marketing digital do ponto de vista do anunciante. Para o problema proposto, definimos um algoritmo chamado balGreedy, e provamos suas garantias para instâncias determísticas e estocásticas do AdInvest. Os teoremas provados garantem ao nosso algoritmo resultados de pior caso relativamente próximos ao OPT, em diversos tipos de instâncias levantadas ao decorrer do trabalho. Em especial, focamos nas instâncias que modelam o efeito de saturação das audiências, que se faz presente na dinâmica de anúncios online. Como mostrado nos experimentos computacionais, o algoritmo balGreedy se mostrou consistentemente eficiente em comparação com as políticas alternativas adotadas, tanto nas instâncias que foram geradas por simulação, quanto em instâncias reais obtidas a partir de dados de um anunciante do Facebook Ads. === [en] In this work, we propose the problem AdInvest, which models the decision-making process for allocating investment in digital marketing from the advertiser perspective. For the proposed problem, we define an algorithm called balGreedy, and we prove its guarantees in deterministic and stochastic instances of the AdInvest. The proven theorems assure to our algorithm worst-case results relatively close to OPT, in several types of instances raised during the work. In particular, we focus on the instances that model the audience saturation effect, which is present in the dynamics of online advertisements. As shown in the computational experiments, the balGreedy algorithm had been consistently efficient compared to the alternative policies adopted, both in the instances generated by simulation and in real instances built from the data of a certain Facebook Ads advertiser. |
author2 |
MARCO SERPA MOLINARO |
author_facet |
MARCO SERPA MOLINARO |
title |
[pt] ALOCAÇÃO DE RECURSOS ONLINE DA PERSPECTIVA DE ANUNCIANTES |
title_short |
[pt] ALOCAÇÃO DE RECURSOS ONLINE DA PERSPECTIVA DE ANUNCIANTES |
title_full |
[pt] ALOCAÇÃO DE RECURSOS ONLINE DA PERSPECTIVA DE ANUNCIANTES |
title_fullStr |
[pt] ALOCAÇÃO DE RECURSOS ONLINE DA PERSPECTIVA DE ANUNCIANTES |
title_full_unstemmed |
[pt] ALOCAÇÃO DE RECURSOS ONLINE DA PERSPECTIVA DE ANUNCIANTES |
title_sort |
[pt] alocação de recursos online da perspectiva de anunciantes |
publisher |
MAXWELL |
publishDate |
2020 |
url |
https://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=49083@1 https://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=49083@2 http://doi.org/10.17771/PUCRio.acad.49083 |
_version_ |
1719338581447671808 |