[en] LOGLINEAR MODEL ESTIMATION WITH MISSING DATA: AN APPLICATION TO SAEB/99.
[pt] Geralmente, em análises estatísticas, dados faltantes em ao menos uma variável resulta da completa eliminação da unidade respondente. Esta estratégia, padrão na maioria dos pacotes estatísticos, não produz resultados livres de viés, a não ser que os dados faltantes sejam Missing Completly At R...
Main Author: | |
---|---|
Other Authors: | |
Language: | pt |
Published: |
MAXWELL
2002
|
Subjects: | |
Online Access: | https://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=2493@1 https://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=2493@2 http://doi.org/10.17771/PUCRio.acad.2493 |
Summary: | [pt] Geralmente, em análises estatísticas, dados faltantes em ao menos uma variável resulta da completa eliminação da unidade respondente. Esta estratégia, padrão na maioria dos pacotes estatísticos, não produz resultados livres de viés, a não ser que os dados faltantes sejam Missing Completly At
Random (MCAR). A tese mostra a classificação usada para o mecanismo gerador de dados faltantes e a modelagem de dados categóricos levando em conta os dados faltantes. Para isto, utiliza-se o modelo loglinear em combinação com o algoritmo EM (Expectation-Maximization). Esta combinação produz
o algoritmo conhecido como ECM (Expectation-Conditional Maximization). A aplicação do método é feita com os dados do SAEB (Sistema Nacional de Avaliação da Educação Básica) para o ano de 1999, investigando a relação entre o responsável pelo desenvolvimento do projeto pedagógico na escola e o impacto na proficiência média da escola. === [en] Generally, in statiscal analysis, missing value in one variable at least, implies the elimination of the
respondent unit. That strategy, default in the most of statistical softwares, don´t produce results free from
bias, unless the missing data are Missing Completly At Random (MCAR). This dissertation shows the classification about the mechanisms that lead to missing data and the modeling of categorical data dealing with missing data. To do that we combine loglinear model and the EM (Expectation-Maximization)algorithm. This combination produce the agorithm called ECM (Expectation-Conditional Maximization)
algorithm. The method is applied to SAEB educational data. The objective is to investigate the relationship between responsable for developing the pedagogic project and the impact on the mean proficiency of school. |
---|