id ndltd-puc-rio.br-oai-MAXWELL.puc-rio.br-1891
record_format oai_dc
collection NDLTD
language pt
sources NDLTD
topic [pt] REDES NEURAIS
[en] NEURAL NETWORKS
[es] REDES NEURALES
[pt] MINERACAO DE DADOS
[en] DATA MINING
[es] MINERACION DE DATOS
[pt] CLASSIFICACAO DE PADROES
[en] PATTERN CLASSIFICATION
[pt] DESCOBERTA DE CONHECIMENTO EM BANCOS DE DADOS
[en] KNOWLEDGE DISCOVERY IN DATABASES
[pt] LOGICA FUZZY
[en] FUZZY LOGIC
[pt] SEGMENTACAO DE MERCADO
[en] MARKET SEGMENTATION
[pt] MARKETING DIRETO
[en] DIRECT MARKETING
[pt] KOHONEN
[en] KOHONEN
spellingShingle [pt] REDES NEURAIS
[en] NEURAL NETWORKS
[es] REDES NEURALES
[pt] MINERACAO DE DADOS
[en] DATA MINING
[es] MINERACION DE DATOS
[pt] CLASSIFICACAO DE PADROES
[en] PATTERN CLASSIFICATION
[pt] DESCOBERTA DE CONHECIMENTO EM BANCOS DE DADOS
[en] KNOWLEDGE DISCOVERY IN DATABASES
[pt] LOGICA FUZZY
[en] FUZZY LOGIC
[pt] SEGMENTACAO DE MERCADO
[en] MARKET SEGMENTATION
[pt] MARKETING DIRETO
[en] DIRECT MARKETING
[pt] KOHONEN
[en] KOHONEN
HUGO LEONARDO COSTA DE AZEVEDO
[en] DATA MINING APPLIED TO DIRECT MARKETING AND MARKET SEGMENTATION
description [pt] Devido à quantidade cada vez maior de dados armazenada pelas instituições, a área de mineração de dados tem se tornado cada vez mais relevante e vários métodos e métodos têm sido propostos de maneira a aumentar sua aplicabilidade e desempenho. Esta dissertação investiga o uso de diversos métodos e técnicas de mineração de dados na modelagem e solução de problemas de Marketing. O objetivo do trabalho foi fazer um levantamento de alguns métodos e técnicas de mineração, avaliar seus desempenhos e procurar integrá-los na solução de problemas de marketing que envolvessem tarefas de agrupamento ou classificação. O trabalho consistiu de quatro etapas principais: estudo sobre o processo de descoberta de conhecimento em bancos de dados (KDD - Knowledge Discovery in Databases); estudo sobre Marketing e alguns problemas de Marketing de Banco de Dados (DBM - Database Marketing) que envolvessem tarefas de agrupamento e classificação; levantamento e estudo de métodos e técnicas de Inteligência Computacional e Estatística que pudessem ser empregados na solução de alguns desses problemas; e estudos de caso. A primeira etapa do trabalho envolveu um estudo detalhado das diversas fases do processo de KDD: limpeza dos dados; seleção; codificação e transformação; redução de dimensionalidade; mineração; e pós-processamento. Na segunda etapa foram estudados os principais conceitos de Marketing e de DBM e a relação entre eles e o processo de KDD. Pesquisaram-se alguns dos tipos de problemas comuns na área e escolheram- se para análise dois que fossem suficientemente complexos e tivessem a possibilidade de se ter acesso a alguma empresa que fornecesse os dados e validasse a solução posteriormente. Os casos selecionados foram um de marketing direto e outro de segmentação de mercado. Na terceira etapa, foram estudados os métodos de Inteligência Computacional e Estatística usualmente empregados em tarefas de agrupamento e classificação de dados. Foram estudados: Redes Perceptron Multi-Camadas, Mapas Auto- Organizáveis, Fuzzy C-Means, K-means, sistemas Neuro-Fuzzy, Árvores de Decisão, métodos Hierárquicos de agrupamento, Regressão Logística, Fuções Discriminantes de Fisher, entre outros. Por fim, na última etapa, procurou-se integrar todos os métodos e técnicas estudados na solução de dois estudos de caso, propostos inicialmente na segunda etapa do trabalho. Uma vez proposta a solução para os estudos de caso, elas foram levadas aos especialistas em Marketing das empresas para serem validadas no âmbito do negócio. Os estudos de caso mostraram a grande utilidade e aplicabilidade dos métodos e técnicas estudadas em problemas de marketing direto e segmentação de mercado. Sem o emprego dos mesmos, a solução para muitos desses problemas tornar-se-ia extremamente imprecisa ou até mesmo inviável. Mostraram também a grande importância das fases iniciais de pré-processamento dos dados no processo de KDD. Muitos desafios persistem ainda na área de mineração de dados, como a dificuldade de modelar dados não lineares e de manipular quantidades muito grande de dados, o que garante um vasto campo para pesquisa nos próximos anos. === [en] The Data Mining field has received great attention lately, due to the increasing amount of data stored by companies and institutions. A great number of Data Mining methods have been proposed so far, which is good but sometimes leads to confusion. This dissertation investigates the performance of many different methods and techniques of Data Mining used to model and solve Marketing problems. The goal of this research was to look for and study some data mining methods, compare them, and try to integrate them to solve Marketing problems involving clustering and classification tasks. This research can be divided in four stages: a study of the process of Knowledge Discovery in Databases (KDD); a study about Marketing problems involving clustering and classification; a study of some methods and techniques of Statistics and Computational Intelligence that could be used to solve some of those problems; and case studies. On the first stage of the research, the different tasks (clustering, classification, modeling, etc) and phases (data cleansing, data selection, data transformation, Data Mining, etc) of a KDD process were studied in detail. The second stage involved a study of the main concepts of Marketing and Database Marketing and their relation to the KDD process. The most common types of problems in the field were studied and, among them, two were selected to be furthered analyzed as case studies. One case was related to Direct Marketing and the other to Market Segmentation. These two cases were chosen because they were complex enough and it was possible to find a company to provide data to the problem and access to their marketing department. On the third stage, many different methods for clustering and classification were studied and compared. Among those methods, there were: Multilayer Perceptrons, Self Organizing Maps, Fuzzy C-Means, K-Means, Neuro-Fuzzy systems, Decision Trees, Hierarquical Clustering Methods, Logistic Regression, Fisher`s Linear Discriminants, etc Finally, on the last stage, all the methods and techniques studied were put together to solve the two case studies proposed earlier. Once they were solved, their solutions were submitted to the Marketing Department of the company who provided the data, so that they could validate the results in the context of their business. The case studies were able to show the large potential of applicability of the methods and techniques studied on problems of Market Segmentation and Direct Marketing. Without employing those methods, it would be very hard or even impossible to solve those problems. The case studies also helped verify the very important role of the data pre-processing phase on the KDD process. Many challenges persist in the data mining field. One could mention, for example, the difficulty to model non-linear data and to manipulate larges amounts of data. These and many other challenges provide a vast field of research to be done in the next years. === [es] Debido a la cantidad cada vez mayor de datos almacenados por las instituiciones, el área de mineración de datos há ganado relevancia y varios métodos han sido propuestos para aumentar su aplicabilidad y desempeño. Esta disertación investiga el uso de diversos métodos y técnicas de mineración de datos en la modelación y solución de problemas de Marketing. EL objetivo del trabajo fue hacer un levantamiento de algunos métodos y técnicas de mineración, evaluar su desempeño e integrarlos en la solución de problemas de marketing que involucran tareas de agrupamiento y clasificación. EL trabajo consta de cuatro etapas principales: estudio sobre el proceso de descubrimiento de conocimientos en bancos de datos (KDD - Knowledge Discovery in Databases); estudio sobre Marketing y algunos problemas de Marketing de Banco de Datos (DBM - Database Marketing) que incluyen tareas de agrupamientoy clasificación; levantamiento y estudio de métodos y técnicas de Inteligencia Computacional y Estadística que pueden ser empleados en la solución de algunos problemas; y por último, estudios de casos. La primera etapa del trabajo contiene un estudio detallado de las diversas fases del proceso de KDD: limpeza de datos; selección; codificación y transformación; reducción de dimensionalidad; mineración; y posprocesamento. En la segunda etapa fueron estudados los principales conceptos de Marketing y de DBM y la relación entre ellos y el proceso de KDD. Algunos de los tipos de problemas comunes en la área fueron investigados, seleccionando dos de ellos, por ser suficientemente complejos y tener posibilidad de acceso a alguna empresa que suministrase los datos y evaluase posteriormente la solución. Los casos selecionados fueron uno de marketing directo y otro de segmentación de mercado. En la tercera etapa, se estudiaron los métodos de Inteligencia Computacional y Estadística que son empleados usualmente en tareas de agrupamiento y clasificación de datos. Éstos fueron: Redes Perceptron Multicamada, Mapas Autoorganizables, Fuzzy C-Means, K-means, sistemas Neuro- Fuzzy, Árboles de Decisión, métodos Jerárquicos de agrupamiento, Regresión Logística, Fuciones Discriminantes de Fisher, entre otros. En la última etapa, se integraron todos los métodos y técnicas estudiados en la solución de dos estudios de casos, propuestos inicialmente en la segunda etapa del trabajo. Una vez proposta la solución para el estudios de casos, éstas fueron evaluadas por los especialistas en Marketing de las empresas. Los estudios de casos mostraron la grande utilidad y aplicabilidad de los métodos y técnicas estudiadas en problemas de marketing directo y segmentación de mercado. Sin el empleo de dichos métodos, la solución para muchos de esos problemas sería extremadamente imprecisa o hasta incluso inviáble. Se comprobó también la gran importancia de las fases iniciales de preprocesamiento de datos en el proceso de KDD. Existen todavía muchos desafíos en el área de mineración de datos, como la dificuldad de modelar datos no lineales y de manipular cantidades muy grandes de datos, lo que garantiza un vasto campo de investigación
author2 MARLEY MARIA BERNARDES REBUZZI VELLASCO
author_facet MARLEY MARIA BERNARDES REBUZZI VELLASCO
HUGO LEONARDO COSTA DE AZEVEDO
author HUGO LEONARDO COSTA DE AZEVEDO
author_sort HUGO LEONARDO COSTA DE AZEVEDO
title [en] DATA MINING APPLIED TO DIRECT MARKETING AND MARKET SEGMENTATION
title_short [en] DATA MINING APPLIED TO DIRECT MARKETING AND MARKET SEGMENTATION
title_full [en] DATA MINING APPLIED TO DIRECT MARKETING AND MARKET SEGMENTATION
title_fullStr [en] DATA MINING APPLIED TO DIRECT MARKETING AND MARKET SEGMENTATION
title_full_unstemmed [en] DATA MINING APPLIED TO DIRECT MARKETING AND MARKET SEGMENTATION
title_sort [en] data mining applied to direct marketing and market segmentation
publisher MAXWELL
publishDate 2001
url https://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=1891@1
https://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=1891@2
https://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=1891@4
http://doi.org/10.17771/PUCRio.acad.1891
work_keys_str_mv AT hugoleonardocostadeazevedo endataminingappliedtodirectmarketingandmarketsegmentation
AT hugoleonardocostadeazevedo esmineraciondedatosparalasoluciondeproblemasdemarketingdirectoysegmentaciondemercado
AT hugoleonardocostadeazevedo ptmineracaodedadosaplicadanasolucaodeproblemasdemarketingdiretoesegmentacaodemercado
_version_ 1718691381362294784
spelling ndltd-puc-rio.br-oai-MAXWELL.puc-rio.br-18912018-06-06T04:20:10Z[en] DATA MINING APPLIED TO DIRECT MARKETING AND MARKET SEGMENTATION [es] MINERACIÓN DE DATOS PARA LA SOLUCIÓN DE PROBLEMAS DE MARKETING DIRECTO Y SEGMENTACIÓN DE MERCADO [pt] MINERAÇÃO DE DADOS APLICADA NA SOLUÇÃO DE PROBLEMAS DE MARKETING DIRETO E SEGMENTAÇÃO DE MERCADO HUGO LEONARDO COSTA DE AZEVEDO[pt] REDES NEURAIS[en] NEURAL NETWORKS[es] REDES NEURALES[pt] MINERACAO DE DADOS[en] DATA MINING[es] MINERACION DE DATOS[pt] CLASSIFICACAO DE PADROES[en] PATTERN CLASSIFICATION[pt] DESCOBERTA DE CONHECIMENTO EM BANCOS DE DADOS[en] KNOWLEDGE DISCOVERY IN DATABASES[pt] LOGICA FUZZY[en] FUZZY LOGIC[pt] SEGMENTACAO DE MERCADO[en] MARKET SEGMENTATION[pt] MARKETING DIRETO[en] DIRECT MARKETING[pt] KOHONEN[en] KOHONEN[pt] Devido à quantidade cada vez maior de dados armazenada pelas instituições, a área de mineração de dados tem se tornado cada vez mais relevante e vários métodos e métodos têm sido propostos de maneira a aumentar sua aplicabilidade e desempenho. Esta dissertação investiga o uso de diversos métodos e técnicas de mineração de dados na modelagem e solução de problemas de Marketing. O objetivo do trabalho foi fazer um levantamento de alguns métodos e técnicas de mineração, avaliar seus desempenhos e procurar integrá-los na solução de problemas de marketing que envolvessem tarefas de agrupamento ou classificação. O trabalho consistiu de quatro etapas principais: estudo sobre o processo de descoberta de conhecimento em bancos de dados (KDD - Knowledge Discovery in Databases); estudo sobre Marketing e alguns problemas de Marketing de Banco de Dados (DBM - Database Marketing) que envolvessem tarefas de agrupamento e classificação; levantamento e estudo de métodos e técnicas de Inteligência Computacional e Estatística que pudessem ser empregados na solução de alguns desses problemas; e estudos de caso. A primeira etapa do trabalho envolveu um estudo detalhado das diversas fases do processo de KDD: limpeza dos dados; seleção; codificação e transformação; redução de dimensionalidade; mineração; e pós-processamento. Na segunda etapa foram estudados os principais conceitos de Marketing e de DBM e a relação entre eles e o processo de KDD. Pesquisaram-se alguns dos tipos de problemas comuns na área e escolheram- se para análise dois que fossem suficientemente complexos e tivessem a possibilidade de se ter acesso a alguma empresa que fornecesse os dados e validasse a solução posteriormente. Os casos selecionados foram um de marketing direto e outro de segmentação de mercado. Na terceira etapa, foram estudados os métodos de Inteligência Computacional e Estatística usualmente empregados em tarefas de agrupamento e classificação de dados. Foram estudados: Redes Perceptron Multi-Camadas, Mapas Auto- Organizáveis, Fuzzy C-Means, K-means, sistemas Neuro-Fuzzy, Árvores de Decisão, métodos Hierárquicos de agrupamento, Regressão Logística, Fuções Discriminantes de Fisher, entre outros. Por fim, na última etapa, procurou-se integrar todos os métodos e técnicas estudados na solução de dois estudos de caso, propostos inicialmente na segunda etapa do trabalho. Uma vez proposta a solução para os estudos de caso, elas foram levadas aos especialistas em Marketing das empresas para serem validadas no âmbito do negócio. Os estudos de caso mostraram a grande utilidade e aplicabilidade dos métodos e técnicas estudadas em problemas de marketing direto e segmentação de mercado. Sem o emprego dos mesmos, a solução para muitos desses problemas tornar-se-ia extremamente imprecisa ou até mesmo inviável. Mostraram também a grande importância das fases iniciais de pré-processamento dos dados no processo de KDD. Muitos desafios persistem ainda na área de mineração de dados, como a dificuldade de modelar dados não lineares e de manipular quantidades muito grande de dados, o que garante um vasto campo para pesquisa nos próximos anos.[en] The Data Mining field has received great attention lately, due to the increasing amount of data stored by companies and institutions. A great number of Data Mining methods have been proposed so far, which is good but sometimes leads to confusion. This dissertation investigates the performance of many different methods and techniques of Data Mining used to model and solve Marketing problems. The goal of this research was to look for and study some data mining methods, compare them, and try to integrate them to solve Marketing problems involving clustering and classification tasks. This research can be divided in four stages: a study of the process of Knowledge Discovery in Databases (KDD); a study about Marketing problems involving clustering and classification; a study of some methods and techniques of Statistics and Computational Intelligence that could be used to solve some of those problems; and case studies. On the first stage of the research, the different tasks (clustering, classification, modeling, etc) and phases (data cleansing, data selection, data transformation, Data Mining, etc) of a KDD process were studied in detail. The second stage involved a study of the main concepts of Marketing and Database Marketing and their relation to the KDD process. The most common types of problems in the field were studied and, among them, two were selected to be furthered analyzed as case studies. One case was related to Direct Marketing and the other to Market Segmentation. These two cases were chosen because they were complex enough and it was possible to find a company to provide data to the problem and access to their marketing department. On the third stage, many different methods for clustering and classification were studied and compared. Among those methods, there were: Multilayer Perceptrons, Self Organizing Maps, Fuzzy C-Means, K-Means, Neuro-Fuzzy systems, Decision Trees, Hierarquical Clustering Methods, Logistic Regression, Fisher`s Linear Discriminants, etc Finally, on the last stage, all the methods and techniques studied were put together to solve the two case studies proposed earlier. Once they were solved, their solutions were submitted to the Marketing Department of the company who provided the data, so that they could validate the results in the context of their business. The case studies were able to show the large potential of applicability of the methods and techniques studied on problems of Market Segmentation and Direct Marketing. Without employing those methods, it would be very hard or even impossible to solve those problems. The case studies also helped verify the very important role of the data pre-processing phase on the KDD process. Many challenges persist in the data mining field. One could mention, for example, the difficulty to model non-linear data and to manipulate larges amounts of data. These and many other challenges provide a vast field of research to be done in the next years.[es] Debido a la cantidad cada vez mayor de datos almacenados por las instituiciones, el área de mineración de datos há ganado relevancia y varios métodos han sido propuestos para aumentar su aplicabilidad y desempeño. Esta disertación investiga el uso de diversos métodos y técnicas de mineración de datos en la modelación y solución de problemas de Marketing. EL objetivo del trabajo fue hacer un levantamiento de algunos métodos y técnicas de mineración, evaluar su desempeño e integrarlos en la solución de problemas de marketing que involucran tareas de agrupamiento y clasificación. EL trabajo consta de cuatro etapas principales: estudio sobre el proceso de descubrimiento de conocimientos en bancos de datos (KDD - Knowledge Discovery in Databases); estudio sobre Marketing y algunos problemas de Marketing de Banco de Datos (DBM - Database Marketing) que incluyen tareas de agrupamientoy clasificación; levantamiento y estudio de métodos y técnicas de Inteligencia Computacional y Estadística que pueden ser empleados en la solución de algunos problemas; y por último, estudios de casos. La primera etapa del trabajo contiene un estudio detallado de las diversas fases del proceso de KDD: limpeza de datos; selección; codificación y transformación; reducción de dimensionalidad; mineración; y posprocesamento. En la segunda etapa fueron estudados los principales conceptos de Marketing y de DBM y la relación entre ellos y el proceso de KDD. Algunos de los tipos de problemas comunes en la área fueron investigados, seleccionando dos de ellos, por ser suficientemente complejos y tener posibilidad de acceso a alguna empresa que suministrase los datos y evaluase posteriormente la solución. Los casos selecionados fueron uno de marketing directo y otro de segmentación de mercado. En la tercera etapa, se estudiaron los métodos de Inteligencia Computacional y Estadística que son empleados usualmente en tareas de agrupamiento y clasificación de datos. Éstos fueron: Redes Perceptron Multicamada, Mapas Autoorganizables, Fuzzy C-Means, K-means, sistemas Neuro- Fuzzy, Árboles de Decisión, métodos Jerárquicos de agrupamiento, Regresión Logística, Fuciones Discriminantes de Fisher, entre otros. En la última etapa, se integraron todos los métodos y técnicas estudiados en la solución de dos estudios de casos, propuestos inicialmente en la segunda etapa del trabajo. Una vez proposta la solución para el estudios de casos, éstas fueron evaluadas por los especialistas en Marketing de las empresas. Los estudios de casos mostraron la grande utilidad y aplicabilidad de los métodos y técnicas estudiadas en problemas de marketing directo y segmentación de mercado. Sin el empleo de dichos métodos, la solución para muchos de esos problemas sería extremadamente imprecisa o hasta incluso inviáble. Se comprobó también la gran importancia de las fases iniciales de preprocesamiento de datos en el proceso de KDD. Existen todavía muchos desafíos en el área de mineración de datos, como la dificuldad de modelar datos no lineales y de manipular cantidades muy grandes de datos, lo que garantiza un vasto campo de investigaciónMAXWELLMARLEY MARIA BERNARDES REBUZZI VELLASCOEMMANUEL PISECES LOPES PASSOSEMMANUEL PISECES LOPES PASSOS2001-08-28TEXTOhttps://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=1891@1https://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=1891@2https://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=1891@4http://doi.org/10.17771/PUCRio.acad.1891pt