[en] PROBABILISTIC LATENT SEMANTIC ANALYSIS APPLIED TO RECOMMENDER SYSTEMS

[pt] Os sistemas de recomendação são um tema de pesquisa constante devido a sua grande quantidade de aplicações práticas. Estes sistemas podem ser abordados de diversas maneiras, sendo uma das mais utilizadas a filtragem colaborativa, em que para recomendar um item a um usuário são utilizados dados...

Full description

Bibliographic Details
Main Author: DIOGO SILVEIRA MENDONCA
Other Authors: RUY LUIZ MILIDIU
Language:pt
Published: MAXWELL 2009
Subjects:
Online Access:https://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=13073@1
https://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=13073@2
http://doi.org/10.17771/PUCRio.acad.13073
Description
Summary:[pt] Os sistemas de recomendação são um tema de pesquisa constante devido a sua grande quantidade de aplicações práticas. Estes sistemas podem ser abordados de diversas maneiras, sendo uma das mais utilizadas a filtragem colaborativa, em que para recomendar um item a um usuário são utilizados dados de comportamento de outros usuários. Porém, nem sempre os algoritmos de filtragem colaborativa atingem níveis de precisão necessários para serem utilizados em aplicações reais. Desta forma este trabalho tem como objetivo avaliar o desempenho da análise probabilística de semântica latente (PLSA) aplicado a sistemas de recomendação. Este modelo identifica grupos de usuários com comportamento semelhante através de atributos latentes, permitindo que o comportamento dos grupos seja utilizado na recomendação. Para verificar a eficácia do método, apresentamos experimentos com o PLSA utilizando os problemas de recomendação de anúncios na web e a recomendação de filmes. Evidenciamos uma melhoria de 18,7% na precisão da recomendação de anúncios na web e 3,7% de melhoria no erro quadrático sobre a Média das Médias para o corpus do Netflix. Além dos experimentos, o algoritmo foi implementado de forma flexível e reutilizável, permitindo adaptação a outros problemas com esforço reduzido. Tal implementação também foi incorporada como um módulo do LearnAds, um framework de recomendação de anúncios na web. === [en] Recommender systems are a constant research topic because of their large number of practical applications. There are many approaches to address these problems, one of the most widely used being collaborative filtering, in which in order to recommend an item to a user, data of other users` behaviors are employed. However, collaborative filtering algorithms do not always reach levels of precision required for the use in real applications. Within this context, the present work aims to evaluate the performance of the probabilistic latent semantic analysis (PLSA) applied to recommender systems. This model identifies groups of users with similar behaviors through latent attributes, allowing the use of these behaviors in the recommendation. To check the effectiveness of the method, there were presented experiments with problems of both web ad recommending and film recommending. An improvement of 18,7% were found in the accuracy of the recommendation of ads on the web and we also found 3.7% of improvement in Root Mean Square Error over the Means of Means baseline system for the Netflix corpus. Apart from the aforementioned experiments, the algorithm was implemented in a flexible and reusable way, allowing its adaptation to other problems with reduced effort. This implementation has also been incorporated as a module of LearnAds, a framework for the recommendation of ads on the web.