[en] HYBRID OPTIMIZATION SYSTEM FOR THE CONTROL STRATEGIES OF INTELLIGENT WELLS UNDER UNCERTAINTIES

[pt] A atividade de gerenciamento de reservatórios é uma tarefa essencial que visa o desafio da otimização da explotação de reservatórios de petróleo. Como resposta a tal desafio a indústria de óleo e gás vem desenvolvendo novas tecnologias, como a de poços inteligentes. Esses poços tem objetivo...

Full description

Bibliographic Details
Main Author: LUCIANA FALETTI ALMEIDA
Other Authors: MARLEY MARIA BERNARDES REBUZZI VELLASCO
Language:pt
Published: MAXWELL 2007
Subjects:
Online Access:https://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=10863@1
https://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=10863@2
http://doi.org/10.17771/PUCRio.acad.10863
Description
Summary:[pt] A atividade de gerenciamento de reservatórios é uma tarefa essencial que visa o desafio da otimização da explotação de reservatórios de petróleo. Como resposta a tal desafio a indústria de óleo e gás vem desenvolvendo novas tecnologias, como a de poços inteligentes. Esses poços tem objetivo de baratear as operações de restaurações mais corriqueiras através do controle de sua tecnologia. Assim, este trabalho trata do desenvolvimento de campos inteligentes e apresenta um sistema de apoio à decisão capaz de otimizar, através de algoritmos evolucionários, o processo de controle da tecnologia de poços inteligentes considerando incertezas de falha e geológica. Além disso, o sistema se propõe a apoiar na tomada de decisão pelo uso ou não de poços inteligentes, dado um reservatório pronto para ser explorado ou para receber investimentos de expansão. O controle da tecnologia de poços inteligentes (IWT - Intelligent Wells Technology) empregado nesse estudo, refere-se à operação de abertura e fechamento dos dispositivos (válvulas) existentes nesses tipos de poços. Através da otimização com algoritmos genéticos se busca uma estratégia de controle pró-ativo, em outras palavras, agir antes do efeito, onde se busca nos tempos iniciais de produção uma configuração de válvulas que seja capaz de: atrasar a chegada da frente de água aos poços produtores, antecipar a produção de óleo ou melhorar a recuperação de óleo do campo; em conseqüência, uma operação que leve à maximização do valor presente líquido (VPL). O emprego de estratégias de controle que visam beneficiar a completação identifica o campo como inteligente. Outros trabalhos abordam o problema de otimização de controle de válvulas em poços inteligentes, porém eles utilizam métodos clássicos de otimização que limitam o número de válvulas ou ainda otimizam estratégias sem considerar os intervalos de tempo desejados para manutenção das válvulas. O modelo evolucionário empregado nesse estudo, baseado em algoritmos genéticos, consegue formular uma estratégia de controle para todas as válvulas presentes em uma determinada configuração de produção, em qualquer intervalo de tempo desejado, atendendo ao critério econômico de maximizar o VPL. Para apoiar a tomada de decisão, pelo uso ou não de poços inteligentes, consideram-se incertezas de falha e geológica. O modelo proposto foi avaliado em três reservatórios petrolíferos, sendo o primeiro um reservatório sintético, e os outros dois reservatórios mais complexos com características mais próximas das reais. Os resultados encontrados indicam que o modelo proposto permite alcançar boas estratégias de controle que levam a um aumento do VPL. A principal contribuição deste trabalho é a concepção e implementação de um sistema baseado em técnicas inteligentes capaz de apoiar no desenvolvimento e gerenciamento de reservatórios petrolíferos inteligentes considerando incertezas. === [en] The reservoir management is an important task that aims at the optimization of oil reservoir exploitation. To support this challenging mission, the oil and gas industry has been developing new technologies such as intelligent wells. The purpose of these wells is to reduce costs of the most common restoring operations by control of their actuators. Thus, this work deals with intelligent fields development and presents a decision support system able to optimize, by using evolutionary algorithms, the intelligent wells technology control process considering geological and technical uncertainties. In addition, the system gives support for the decision of rather to use or not intelligent wells, given a reservoir ready to be explored or to receive expansion investments. The control of Intelligent Wells Technology (IWT), as applied in this study, refers to the opening and closing operations of valves in these types of wells. An optimization based on genetic algorithms is used to produce a pro-active control strategy, that is, one that anticipates the actions to be taken in present time in order to achieve better results in the future. Such a strategy proposes a valve configuration that will be able to: delay the water cut on producer wells, advance the oil production or benefit the oil recuperation. As a result, the obtained configuration leads to a maximization of the NPV (Net Present Value). The usage of control strategies that aim to benefit completion identifies the oil field as intelligent. Other works also deal with valve control optimization problems in intelligent wells. However, they use classical optimization methods; these methods limit the number of valves or optimize strategies without considering time. The evolutionary model, based on genetic algorithm, applied in this study, can formulate a control strategy for all valves in a certain production configuration, for any desired time interval, according to the economical criteria of NPV maximization. In order to support the decision making for the use or not of intelligent wells, technical and geological uncertainties are considered. The proposed model was evaluated in three oil reservoirs. The first one is a synthetic reservoir, simple and not real; the other two are more complex with close to real characteristics. The results obtained indicate that the proposed model allows good control strategies that increase the NPV. The main contribution of this work is the conception and implementation of a system based on intelligent techniques that is able to support the development and management of intelligent oil reservoirs considering uncertainties.