[en] THE STEINER PROBLEM IN RECTILINEAR METRIC: PROPERTIES, NEW HEURISTICS AND COMPUTATIONAL STUDY

[pt] Nesta tese faz-se uma extensa revisão bibliográfica sobre o problema de Steiner na métrica retilínea, destacando-se a aplicação do mesmo no projeto de VLSI. São descritas em detalhes várias heurísticas existentes na literatura para as quais estudam-se a complexidade computacional e a quali...

Full description

Bibliographic Details
Main Author: CID CARVALHO DE SOUZA
Other Authors: CELSO DA CRUZ CARNEIRO RIBEIRO
Language:pt
Published: MAXWELL 2007
Subjects:
Online Access:https://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=10236@1
https://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=10236@2
http://doi.org/10.17771/PUCRio.acad.10236
Description
Summary:[pt] Nesta tese faz-se uma extensa revisão bibliográfica sobre o problema de Steiner na métrica retilínea, destacando-se a aplicação do mesmo no projeto de VLSI. São descritas em detalhes várias heurísticas existentes na literatura para as quais estudam-se a complexidade computacional e a qualidade das soluções obtidas. Além disso, são estabelecidos novos resultados relativos ao comportamento de pior caso destas heurísticas. Propõe-se, ainda, duas novas heurísticas para o problema de Steiner na métrica retilínea para as quais são estudadas a complexidade computacional e a qualidade da solução, inclusive com a análise do pior caso. Uma grande quantidade de testes computacionais permitiu a realização de uma comparação do desempenho das diversas heurísticas implementadas, concluindo-se que uma das novas heurísticas propostas fornece, em média, soluções melhores do que aquelas fornecidas pelas demais heurísticas conhecidas na literatura. === [en] In this dissertation we present a survey about the Steiner problem in the rectilinear metric, illustrating its applications to the VLSI desing. A large number of heurístics already described in literature is studied in details. Moreover, we study the complexity of these heuristics and the quality of their solutions. New results concerning their worst case behavior are stated. We also propose two new heuristics for thew Steiner problem in the rectilinear metric, for which we study the complexity and the quality of the solutions, including the worst case analysis. A large nember of computational experiments was conducted and allowed the comparison of the performances of the heuristics implemented. We conclude from these experiments that, in the average, the solutions obtained by one of the new heuristics are better than the solutions obtained by those alreafy available in the literature.