Tunnel One Generalized Satellite Knots
In 1984, T. Kobayashi gave a classification of the genus two 3-manifolds with a nontrivial torus decomposition. The intent of this study is to extend this classification to the genus two, torally bounded 3-manifolds with a separating non-trivial torus decomposition. These 3-manifolds are also known...
Main Author: | |
---|---|
Format: | Others |
Published: |
PDXScholar
1995
|
Subjects: | |
Online Access: | https://pdxscholar.library.pdx.edu/open_access_etds/1273 https://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=2272&context=open_access_etds |
Summary: | In 1984, T. Kobayashi gave a classification of the genus two 3-manifolds with a nontrivial torus decomposition. The intent of this study is to extend this classification to the genus two, torally bounded 3-manifolds with a separating non-trivial torus decomposition. These 3-manifolds are also known as the tunnel-1 generalized satellite knot exteriors. The main result of the study is a full decomposition of the exterior of a tunnel-1 satellite knot in an arbitrary 3-manifold. Several corollaries are drawn from this classification. First, Schubert's 1953 results regarding the existence and uniqueness of a core component for satellite knots in the 3-sphere is extended to tunnel-1 satellite knots in arbitrary 3-manifolds. Second, Morimoto and Sakuma's 1991 classification of tunnel-1 satellite knots in the 3-sphere is extended to a classification of the tunnel-1 satellite knots in lens spaces. Finally, for these knot exteriors, a result of Eudave-Muñoz in 1994 regarding the relative position of tunnels and decomposing tori is recovered. |
---|