Characterization of the CPI-17 Gene Family in Danio rerio

Regulation of smooth muscle contraction depends on the phosphorylated state of myosin light chain (MLC). Although there are many kinases responsible for phosphorylating MLC, the myosin phosphatase complex is solely accountable for its dephosphorylation. Myosin phosphatase, in turn, is tightly regu...

Full description

Bibliographic Details
Main Author: Virk, Guneet Kaur
Format: Others
Published: Scholarly Commons 2016
Subjects:
Online Access:https://scholarlycommons.pacific.edu/uop_etds/3141
https://scholarlycommons.pacific.edu/cgi/viewcontent.cgi?article=4140&context=uop_etds
Description
Summary:Regulation of smooth muscle contraction depends on the phosphorylated state of myosin light chain (MLC). Although there are many kinases responsible for phosphorylating MLC, the myosin phosphatase complex is solely accountable for its dephosphorylation. Myosin phosphatase, in turn, is tightly regulated by many proteins. One of them being the CPI-17 gene family, which inhibits myosin phosphatase. This family of proteins is composed of CPI-17 itself, PHI-1, KEPI, and GBPI. Zebrafish have two genes each of CPI-17 and PHI-1, which are expressed during early embryonic development. This study sets out to investigate whether the two isoforms of CPI-17 and PHI-1 have diverged in function or expression using zebrafish as a model organism. Through a series of biochemical tests and assays, we have determined that the two isoforms have diverged in their expression pattern from each other, however they have similar function.